
D4.1 Integration and deployment of TwinEU platform

1

Integration and deployment of

TwinEU platform

Deliverable No: D4.1

Work package: WP4

Official delivery date: 30.06.2025

Actual delivery date: 04.07.2025

Dissemination level: Public

© Copyright 2024-2027 by the TwinEU Consortium. All Rights Reserved.

Project: 101136119 | HORIZON-CL5-2023-D3-01 | www.twineu.net

https://twineu.net/

D4.1 Integration and deployment of TwinEU platform

2

Document Authors

Lenos Peratitis (ED) Vasilis Theodorou (UBE)

Apostolos Kapetanios (ED) Ferdinando Bosco (ENG)

Dimitrios Apostolidis (ED) Luca Greci (ENG)

Version Date Author(s) Notes

0.1 16/08/2025 Lenos Peratitis (ED) Table of Contents

0.7 03/06/2025 ED First Draft of Document

0.8 18/06/2025 All D4.1 Contributors Finalized Contributions

0.9 26/06/2025 ELES, RWTH Reviewed

1.0 03/07/2025 ED Final Draft for Submission

 Name Surname Date

Responsible Partner European Dynamics

Checked by WP leader Lenos Peratitis (ED) 03/07/2025

Verified by the appointed Reviewers
Gregor Omahen (ELES)
Juan Adolfo Galeano (RWTH)

24/06/2025
26/06/2025

Approved by Project Coordinator Padraic McKeever (Fraunhofer) 04/07/2025

Disclaimer

Funded by the European Union. Views and opinions expressed are however those of the author(s)

only and do not necessarily reflect those of the European Union. Neither the European Union nor

the granting authority can be held responsible for them.

D4.1 Integration and deployment of TwinEU platform

3

Table of Contents

1 Introduction ... 8

1.1 Task 4.1 Services Workbench/ Big Data / AI marketplace for interoperability 9

1.2 Task 4.2 Interactive augmented exploration of TwinEU DT .. 9

1.3 Task 4.4 TwinEU platform development ... 9

1.4 Task 4.5 EU Data Space adaptation to support the TwinEU continuum 10

1.5 Objectives of the Work Reported in this Deliverable .. 10

1.6 Outline of the deliverable .. 10

1.7 How to Read this Document .. 11

2 Reference Architecture & The TwinEU platform ... 12

2.1 Introduction ... 12

2.2 TwinEU Reference Architecture .. 13

2.3 TwinEU General Functionality ... 14

2.4 The TwinEU Architecture ... 15

3 Services Workbench/ Big Data / AI marketplace for interoperability ... 17

3.1 Components Description ... 17

3.2 Components Functionalities .. 18

3.3 Deployment ... 18

4 Interactive augmented exploration of TwinEU DT .. 20

4.1 Components Description ... 20

4.1.1 VR Technologies: State of the Art and main requirements .. 20

4.1.2 SDKs, Platforms, and Tools for VR Visualization and Collaboration................................ 21

4.2 Features & Functionalities ... 25

4.3 Deployment ... 29

5 Data Space adaptation to support the TwinEU continuum ... 31

5.1 TwinEU Digital Twin Federator .. 31

5.1.1 OneNet Data Space Framework .. 31

5.1.2 Evolution from OneNet Framework and First Release ... 32

5.2 Features & Functionalities ... 33

5.2.1 Interfaces – REST APIs and GUI ... 35

5.3 Deployment ... 40

5.3.1 Docker Installation .. 40

6 TwinEU platform development and integration.. 41

D4.1 Integration and deployment of TwinEU platform

4

6.1 Introduction ... 41

6.2 TwinEU Decentralised Middleware Components.. 41

6.3 Interfaces & Functionalities ... 42

6.4 Integration Guidelines of the TwinEU Middleware ... 44

6.4.1 Prerequisites and Installation ... 44

6.4.2 Hardware Requirements ... 44

6.4.3 Operating System Requirements .. 44

6.4.4 Software Requirements .. 44

6.4.5 Software Deployment Instructions ... 44

6.5 Testing Scenarios Methodology .. 45

7 Integration & Development Plan of the TwinEU framework .. 46

7.1 Overview of the Development Plan ... 46

7.2 Detailed Planning ... 50

7.2.1 Phase A: First Development Phase .. 50

7.2.2 Phase B: Intermediate Development Phase ... 52

7.2.3 Phase C: Final Development Phase ... 54

8 Conclusions .. 56

References .. 57

D4.1 Integration and deployment of TwinEU platform

5

List of Figures

Figure 1: Middleware Integration Methodology .. 9

Figure 2: TwinEU RA [18] .. 15

Figure 3: TwinEU platform components aligned to Reference Architecture 16

Figure 4: XR Client for Unity .. 25

Figure 5: XRCU Architecture ... 28

Figure 6: OneNet Data Space Framework ... 31

Figure 7: OneNet Connector Architecture .. 32

Figure 8: TwinEU Data Space Business Process .. 34

Figure 9: Data Space Protocol Negotiation Steps [29] .. 35

Figure 10: Connecter Login Page .. 37

Figure 11: Data Catalogue ... 38

Figure 12: Create Data Offering .. 38

Figure 13: Subscribe to Offerings .. 39

Figure 14: Consume Data .. 39

List of Tables

Table 4: VR Applications Platforms ... 21

Table 5: Leading VR Development Platforms ... 22

Table 6: Networking Options for Multiplayer VR.. 23

Table 7: Configuration and Onboarding ... 35

Table 8: Data Indexing and Catalogue .. 35

Table 9: Negotiation and Data Transfer .. 36

Table 10: Catalogue .. 36

Table 11: Negotiation.. 36

Table 12: Data Transfer ... 37

Table 13: 1st Development Phase ... 46

Table 14: 2nd Development Phase ... 47

Table 15: Final Development Phase .. 49

D4.1 Integration and deployment of TwinEU platform

6

List of Abbreviations and Acronyms

Acronym Meaning

AI Artificial Intelligence

AIOTI Alliance for IoT and Edge Computing Innovation

BDVA Big Data Value Association

BD4NRG Big Data for Next Generation Energy

COSMAG Comprehensive Architecture for Smart Grid

CPU Central Processing Unit

DSO Distribution System Operator

DSP Dataspace Protocol

DT Digital Twin

EU European Union

GA Grant Agreement

GUI Graphical User Interface

HLA High Level Architecture

IAM Identity and Access Management

IDSA International Data Space Association

ISO International Organization for Standardization

ML Machine Learning

MS Milestone

MVP Minimum Viable Product

NGO Netcode for GameObjects

OS Operating System

PUN Photon Unity Networking

RA Reference Architecture

RAM Reference Architecture Model

SDK Software Development Kit

UI User Interface

TSO Transmission System Operator

VR Virtual Reality

WP Work Package

XR Extended Reality

XRCU XR Client for Unity

D4.1 Integration and deployment of TwinEU platform

7

Executive Summary
The TwinEU platform development focuses on the implementation and integration of a

Middleware that enables the secure, interoperable and scalable federation of Digital Twin systems

across Europe’s energy ecosystem. This development process is based on the combined analysis of

the defined Data-Space-enabled Middleware architecture and requirements alongside with the

analysis of TwinEU Digital Twin use cases.

The decentralized TwinEU platform (Middleware) is designed and developed in order to integrate

the value-added modules of the TwinEU whole framework namely, Services Workbench/ Big Data / AI

marketplace, Interactive augmented exploration of TwinEU DT and the TwinEU Digital Twins pan-

European network.

The TwinEU platform’s main objective is to operate as the core, administrative component of the

broader TwinEU Framework. It implements functionalities such as robust authentication of TwinEU

participants, thereby ensuring adherence to established data access control policies, discovery

functionalities and privacy regulations. Additionally, it serves as the primary access interface to the

broader TwinEU Framework, facilitating the configuration and integration of secure, peer-to-peer

communication channels among participants (through the TwinEU Connector). Finally, the TwinEU

Middleware contains the administrative and executable components that are fully compatible with

the OneNet Connector (the base of the TwinEU Connector) and the European Energy Data Space that

manage and coordinate the interoperability, sovereignty, robustness and efficiency within the IDSA

network, alongside with the support of seamless interaction with external actors and services.

The first development process implemented until TwinEU M18 presents the following outcomes:

• A robust middleware infrastructure that enables interoperability and integration among all

the TwinEU Framework modules.

• A scalable orchestration mechanism for real-time installation, configuration and interaction

of distributed Digital Twins through the TwinEU Connector.

• Integration guidelines to align various tools, data models, and computational environments

into a unified deployment strategy.

• A clear roadmap for the platform’s evolution, with flexibility to incorporate future TwinEU

services, models, and system extensions.

• Integration with the Data Space federated network in order to manage the lifecycle of digital

assets, ensuring secure and sovereign data exchange.

In general, the TwinEU platform develops a scalable, modular, and interoperable Middleware that

supports real-time data and model exchange, multi-level orchestration, and secures interaction

between heterogeneous Digital Twin instances, thereby facilitating the deployment of pan-European

energy scenarios.

The results of the first version of TwinEU platform (M18) demonstrate that federated Digital Twin

architecture is both technically feasible and promising operationally. By enabling a distributed but

coordinated approach to Digital Twin coordination and integration, the TwinEU platform lays the

foundation for enhanced observability, predictive analytics, and collaborative decision-making across

Europe’s energy systems, supporting the strategic objectives of resilience, sustainability, and cross-

border energy cooperation.

D4.1 Integration and deployment of TwinEU platform

8

1 Introduction

Europe is undergoing a transformative shift in its energy landscape, driven by the urgent need to

enhance sustainability, security, and resilience in the face of geopolitical, environmental, and

economic pressures. The increasing integration of renewable energy sources, decentralised energy

production, and evolving market dynamics demand a more intelligent, interoperable, and coordinated

infrastructure. In this context, Digital Twins (DTs) emerge as powerful tools for enabling real-time

visibility, predictive insights, and intelligent coordination across energy networks in real time. The

concept of federated Digital Twins, which is introduced by the TwinEU project, addresses the need for

scalable, decentralised digital infrastructures that respect data sovereignty, support cross-border

energy coordination, and enable advanced simulation, forecasting, and decision-making capabilities

through AI and high-performance computing.

The TwinEU Platform Development lies at the heart of this transformation. It focuses on building

the core platform that connects diverse local and national DT instances into a unified, TwinEU pan-

European framework. This development process includes the development of the TwinEU

middleware, integration of data and model-sharing mechanisms, and deployment of the Data-Space-

enabled federated network of Digital Twin. The TwinEU platform acts as the orchestrator of

distributed resources, services, and scenarios across this federated architecture. Additionally, the

TwinEU Middleware operates as an administrator of the value-adding functionalities of the TwinEU

ecosystem such as the Services Workbench/ Big Data / AI marketplace for interoperability and

Interactive augmented exploration tools of TwinEU DT.

This deliverable presents the work that has been done regarding the activities of Task 4.4 (TwinEU

Platform Development) and the correlated work done in Tasks 4.1, 4.2 and 4.5. It provides thorough

guidelines and methodologies regarding the implementation and integration of scalable,

decentralized digital infrastructures that enable federated data and model exchange, respect data

sovereignty, support cross-border energy coordination, and enable advanced simulation, forecasting,

and decision-making capabilities through AI and high-performance computing.

The purpose of Task 4.4 is to design, implement, and validate a modular, scalable, and secure

platform capable of hosting and coordinating multiple Data Space participants, services and Digital

Twins. It aims to enable cross-domain and cross-border collaboration while ensuring data governance,

computational efficiency, and seamless interaction with external services and actors.

To explore how this initiative is being realised, this document will present:

• The underlying position of the Middleware in the TwinEU reference architecture of the

federated Digital Twin framework.

• The components of the TwinEU platform, along with their functionality, development process

and integration.

• The integration of core services like the Service Workbench, AI/Big Data marketplace, and

interactive DT exploration tools with the TwinEU Middleware.

• The adaptation of the European Data Space concept from the TwinEU Framework to support

secure, interoperable model and data sharing.

• The implementation plan and integration methodology for supporting TwinEU Framework

functionality and pan-European energy scenarios.

Through these efforts, Task 4.4 delivers the technological backbone of the TwinEU vision — a

platform not only for today's needs but also for Europe’s digital energy future.

D4.1 Integration and deployment of TwinEU platform

9

1.1 Task 4.1 Services Workbench/ Big Data / AI marketplace for

interoperability

The primary objective of Task 4.1 is to establish the foundational Big Data management capabilities

of the TwinEU platform, ensuring efficient batch and real-time data ingestion, management, and

curation processes. A critical goal is enabling seamless integration of advanced AI technologies that

address key data-driven challenges in the energy sector, including accurate demand and generation

forecasting, behavioural analytics, data handling, visualization and elasticity profiling. The TwinEU

middleware serves as the functional enabler for the effective and interoperable integration and

facilitation of the Services Workbench and AI Marketplace, enabling the deployment of intelligent,

modular, and scalable services across a federated European Digital Twin infrastructure.

1.2 Task 4.2 Interactive augmented exploration of TwinEU DT

The core objective of Task 4.2 is to develop a scalable, adaptable and user-friendly multiuser

Extended Reality (XR) environment capable of delivering high-quality immersive experiences

regarding the management and visualisation of TwinEU Digital Twin systems. Task 4.2 will also provide

advanced data and model visualization services designed to enhance interaction and collaborative

workflows for stakeholders within the TwinEU ecosystem. The XR environment that will be developed

should be compatible and pluggable with the TwinEU platform. The TwinEU platform will offer

administrative functionalities, offering, discovery, management, data access and role-authorization

control to the TwinEU users that are willing to use and create assets that are part of this XR

environment.

1.3 Task 4.4 TwinEU platform development

Task 4.4 delivers the TwinEU middleware platform - a scalable integration layer that unifies data,

digital models, and compute resources (see Figure 1). It starts with deploying foundational

frameworks and performing gap analyses to define MVP components, then folds existing tools and

services into a coherent stack. Central to the effort is the Digital Twin Federator, a data-space

connector that clusters local twins into a pan-European ecosystem.

Figure 1: Middleware Integration Methodology

D4.1 Integration and deployment of TwinEU platform

10

1.4 Task 4.5 EU Data Space adaptation to support the TwinEU

continuum

The main objective of Task 4.5 is to ensure that the TwinEU platform, the broader TwinEU

framework and the TwinEU participants are perfectly aligned with EU Data Space principles. It focusses

on robust digital model sharing, comprehensive data governance, and secure, trusted, and

interoperable data management. The practical scope of this task is to iteratively design, implement

and enhance the TwinEU Data-Space Connector that is based on the defined and robust OneNet

Connector. The TwinEU connector should be developed in order to serve the best way the TwinEU use

cases. Finally, the TwinEU Connector has to be perfectly compatible with the TwinEU Platform that

will administrate and offer management functionalities for the operation of the Data Space Connector

federated network.

1.5 Objectives of the Work Reported in this Deliverable

The objective of the work reported in this deliverable is to thoroughly set the principles and

implement the first iteration (M18) of the development and integration of the TwinEU platform. The

work includes the definition of the relationship of the TwinEU Middleware with the value-added

modules of the TwinEU whole framework namely, Services Workbench/ Big Data / AI marketplace,

Interactive augmented exploration of TwinEU DT and the TwinEU Digital Twins pan-European

network. The work defines the interfaces and the integration prerequisites, process and integration

methodology between the components.

Analytically, the objectives of the activities that are described in this document are the following:

• Establishing a robust middleware layer that supports and administrates decentralized data

and model sharing across heterogeneous Connectors and stakeholders.

• Ensuring compatibility with data space standards and OneNet connectors to enable secure

and sovereign data/model exchange.

• Develop a decentralized Middleware responsible for orchestrating the dynamic management

of local DTs, managing interoperability, and supporting scaling towards a fully operational

pan-European Digital Twin ecosystem.

• Laying the technical foundation to enable pan-European use cases and cross-border

coordination of energy infrastructure through shared Workbench/ Big Data / AI marketplaces

and Interactive augmented exploration of Digital Twins.

• Create extensive documentation for potential TwinEU developers, users and generally

participants to develop and integrate the desired software infrastructure and be prepared for

the next development iterations.

1.6 Outline of the deliverable

The remainder of Deliverable 4.1 is structured as follows:

• Chapter 2 – Reference Architecture & The TwinEU Platform introduces the TwinEU Reference

Architecture, providing a comprehensive description of its design principles, general structure,

technological stack, and alignment with existing reference frameworks (connection with D3.1).

• Chapter 3 – Services Workbench/Big Data/AI Marketplace for Interoperability elaborates on

the Services Workbench and Big Data/AI Marketplace by describing their main software

D4.1 Integration and deployment of TwinEU platform

11

components, specific functionalities, and the planned approach for their deployment and

operational integration.

• Chapter 4 – Interactive Augmented Exploration of TwinEU DT defines the approach for

developing the interactive, augmented exploration framework for the TwinEU Digital Twin,

emphasizing immersive XR interactions, detailed component descriptions, key features, and

strategies for effective deployment.

• Chapter 5 – Data Space Adaptation to Support the TwinEU Continuum details how the TwinEU

implementation aligns and integrates with EU Data Space standards, clearly outlining

component-level descriptions, functional capabilities, and specific deployment approaches.

• Chapter 6 – TwinEU Integrated Platform Development provides comprehensive integration

guidelines for the TwinEU middleware platform, specifying the features and functionalities of

its core components, defining relevant testing scenarios, and presenting both the status and

future development plans.

• Chapter 7 – Development and Integration methodology and plan.

• Chapter 8 – Conclusions summarize the key results in this deliverable and outlines next steps.

1.7 How to Read this Document

To effectively understand this deliverable, readers should first review Deliverable D3.1 57[18],

which establishes the foundational TwinEU Reference Architecture and provides essential context on

system functionalities, architectural decisions, and interoperability frameworks. Additionally,

familiarity with Deliverable D2.2 “TwinEU use cases, pan-European scenarios and KPIs” [32], is

recommended for deeper insight.

This document systematically builds upon these prior insights to present a coherent deployment

plan for the TwinEU middleware platform, laying the groundwork for future technical integration and

validation activities detailed in D4.3 "Validation of Platform & Implementation of TwinEU Pan-

European Scenarios."

D4.1 Integration and deployment of TwinEU platform

12

2 Reference Architecture & The TwinEU platform

This section provides a summarized description of the TwinEU Reference Architecture 57[18], and

the individual components that constitute it. Additionally, there will be a brief description of the

functionality and the core attributes of these components in parallel with the relationships between

them.

2.1 Introduction

The TwinEU project aims to establish a federated pan-European DTs ecosystem, based on a robust,

modular and resilient Reference Architecture. The core objective of this Reference Architecture is to

enable the smooth integration of renewable energy sources and promote sustainable energy

management across Europe. The TwinEU Reference Architecture is designed to support the economic,

societal and technical objectives of the TwinEU project, comply with European policies and restrictions

and address the challenges regarding the construction of an interoperable, scalable framework of

multiple and heterogeneous stakeholders of the energy domain. Specifically, the TwinEU Reference

Architecture acts as a standardized ecosystem that enables the integration of DTs and related services,

supports the coexistence and collaboration of various energy actors and facilitates the data and model

sharing among them. This federated ecosystem serves stakeholders such as DSOs, TSOs, prosumers,

network operators, aggregators, market operators and other relevant actors of the energy domain

and provides the capabilities of simulation, modelling, control and analysis of Europe’s energy

network.

The Reference Architecture aligns with important European initiatives such as GAIA-X [1], FIWARE

[2], BRIDGE [3] and IDSA [4], integrates open standards such as NGSI-LD APIs and is based on past

projects such as OneNet [5], BD4NRG [6] and ENERSHARE [7] to deliver an updated, compatible

architectural framework. From an operational standpoint the TwinEU Architecture provides a

middleware (based on the OneNet framework middleware) that coordinates the ecosystem of

federated DTs integrated with IDSA Connectors that ensure interoperability between systems such as

the Continental Europe Synchronous Area and local energy communities, facilitating coordinated

operation between transmission and distribution networks.

The core functionality of the federated system enables advanced scenario modelling and

simulation capabilities, performs detailed grid behaviour analysis and helps stakeholders assess the

large-scale integration of renewable energy sources. The TwinEU RA supports the development of

innovative services and business models by fostering an open, interoperable ecosystem. This

environment encourages entrepreneurship and accelerates the deployment of new, data-driven

solutions, strengthening the resilience of the energy economy. Its open-source nature promotes broad

adoption and allows grid operators and market players to implement scalable and adaptable

technologies. From a societal standpoint, the architecture boosts grid resilience through dynamic

monitoring and improved system management. It integrates tools for forecasting, anomaly detection,

and the identification of infrastructure constraints, enabling proactive planning and operation. These

capabilities enhance system flexibility, reduce operational costs, and minimize environmental impact,

thereby ensuring a reliable and sustainable energy supply. In essence, the TwinEU Reference

Architecture serves as more than just a technical foundation—it is a transformative driver of economic

growth, societal progress, and environmental sustainability. By aligning with European strategies and

embracing state-of-the-art technologies, it firmly positions TwinEU at the forefront of Europe’s energy

transition.

D4.1 Integration and deployment of TwinEU platform

13

2.2 TwinEU Reference Architecture

The methodological approach of the TwinEU Reference Architecture [18] is based on the 4+1

Architectural UML view model and the ISO 42010 [8] standard, and follows a sequence of steps

regarding its implementation. To effectively describe software architecture, it is common to use

models that capture multiple perspectives of the system. One widely adopted approach in UML is the

“4 + 1” view model [9], which provides a comprehensive representation by organizing the architecture

into five interconnected views. Each view contributes to a unique perspective, collectively offering a

holistic understanding of the system. The five key views of the “4 + 1” model are:

• Logical View: Focuses on the system’s functional requirements, especially from the end-user

perspective. It defines key elements such as objects, components, and classes.

• Process View: Captures the dynamic aspects of the system, including its runtime behaviour,

concurrency, and communication between processes. It addresses performance and scalability

concerns.

• Physical View: Illustrates how the software components are deployed onto the hardware

infrastructure, providing insight from a system engineering standpoint.

• Development View: Describes the software’s static structure, showing how it is organized in terms

of modules and components from the developer’s perspective.

• Scenarios (use cases): Serve to integrate and validate the four previous views by demonstrating

how different parts of the system collaborate to fulfil specific use cases.

ISO 42010:2022 is an international standard that offers a structured framework for developing and

managing architecture descriptions of complex systems. It establishes the essential elements of

system architecture and outlines how these elements address various stakeholder concerns. ISO

42010 identifies three core components that support effective architecture description:

• Architecture Description Frameworks define the structure and conventions used to describe

architectures.

• Architecture Description Languages provide the formal language and syntax for expressing

architectural concepts.

• Architecture Viewpoints and Views help capture and organize stakeholder concerns by structuring

the design process into different perspectives.

Given its multi-layered operation within the broader energy system, the TwinEU ecosystem

represents a complex system where the structured approach defined by ISO 42010 can be particularly

beneficial in managing its architectural complexity. The TwinEU project follows specific steps in order

to design and implement the final Reference Architecture. These steps, in order of priority include:

• Constructing an initial architecture draft for review by the responsible partners

• Conducting a bottom-up and top-down analysis based on the use cases, requirements,

specifications and objectives,

• Integrating results relevant solutions from other European projects in the updated draft; and

• Delivering the final version of the Reference Architecture.

TwinEU Reference Architecture is influenced by architecture models such as “BRIDGE DERA

Reference Architecture” Data Management Working Group [10], Smart Grid Architecture Model

(SGAM) [11], Comprehensive Architecture for Smart Grid (COSMAG) [12], FIWARE Smart Energy

Reference Architecture [13] and Alliance of Internet of Things Innovation (AIOTI) High Level

Architecture [14] and makes use of multiple component frameworks for data processing across Europe

D4.1 Integration and deployment of TwinEU platform

14

such as the International Data Spaces Association (IDSA), the Big Data Value Association (BDVA) [15]

and the GAIA-X project [16].

2.3 TwinEU General Functionality

The core structure of the Reference Architecture consists of three pillars: the Middleware, the

OneNet DT Connector (coupled with DT entities) and the DT Services Workbench and AI Marketplace.

The TwinEU Middleware is the core component of a federated system that performs distributed data

exchange. Specifically, the TwinEU Middleware ensures cohesion and collaboration among the

distributed OneNet DT Connectors which are embedded and serve the data exchange between DTs.

The Middleware is responsible for the following functionalities:

• Configures and Integrates new Connectors for the TwinEU stakeholders.

• Supports federated authentication and authorization, allowing participants to retain control over

their data and identities while enabling secure, role-based access across services.

• Supports interoperability defining the principles and standards that should be followed by the

TwinEU stakeholders.

• Facilitates the orchestration of distributed services and allows users to discover and consume

services offered by other members of the TwinEU.

• Provides a collection of metrics, logs, and traces from all participating systems for performance

monitoring and compliance auditing.

The TwinEU Connectors serve as the trusted technical enablers for secure, sovereign, and

controlled data exchange between independent stakeholders. They form the backbone of data

interoperability and governance within the decentralized system. The Connector is responsible for the

following functionalities:

• Ensures the principle of data sovereignty, namely the right of data providers to retain full control

over how, when, and by whom their data is accessed.

• Enables standardized communication between heterogeneous systems. By following a common

protocol stack and semantic model, they allow the stakeholders in a federated network to

exchange data regardless of differences in software they use or data formats.

• Ensures trust and security, performing operations such as authentication and authorization,

secure communication and identity validation.

• Enforces data usage policies defined by the data provider.

• Enables peer-to-peer, decentralized data exchange. Each TwinEU stakeholder can potentially run

its own Connector, forming a federation of autonomous nodes.

• Offer extensibility and scalability, as it is designed to integrate with existing enterprise systems

and platforms.

The Services Workbench and AI Marketplace are a framework that comes to support and offer

added value to the TwinEU ecosystem. As specific components will offer a wide range of opportunities

for the TwinEU stakeholders to fully leverage their data, their models and their assets, receiving crucial

outcomes and advantages thus maximizing and improving their processes.

D4.1 Integration and deployment of TwinEU platform

15

2.4 The TwinEU Architecture

Figure 2: TwinEU RA [18]

The final TwinEU Reference Architecture design is based on the below four pillars:

1. DT Federation: RA enables secure, decentralized collaboration among energy stakeholders

(TSOs, DSOs, Market Operators, Aggregators) by orchestrating interoperability between their DT

systems.

2. Data Space integration: RA implements the core principles of European Data Spaces, ensuring

secure, sovereign, and policy-driven data exchange between energy stakeholders.

3. Model Sharing and Reusability: TwinEU RA facilitates the reuse and exchange of DT models across

domains and applications through standardized interfaces.

D4.1 Integration and deployment of TwinEU platform

16

4. Semantic Interoperability: RA ensures semantic alignment of exchanged data by adopting

common vocabularies, ontologies, and data models.

Figure 2 highlights the simplified Reference Architecture where the specific WP4 TwinEU platform

components can be mapped. This design also validates the TwinEU platform compliance with the

envisioned architecture.

Figure 3: TwinEU platform components aligned to Reference Architecture

D4.1 Integration and deployment of TwinEU platform

17

3 Services Workbench/ Big Data / AI marketplace for
interoperability

Task 4.1 introduces a set of interoperable and modular components that collectively support the

data-centric and service-oriented needs of the TwinEU federated ecosystem, maximizing the utility

and accessibility for stakeholders. The objective is to facilitate seamless ingestion, curation, discovery,

and usage of data and services across the distributed DT environment.

3.1 Components Description

To address the evolving challenges of energy data processing, AI service integration, and cross-

platform interoperability, four core components have been identified and described below. Each

component plays a distinct role, but they operate in constructive collaboration, forming foundational

elements of the TwinEU architecture. This task introduces four core components, namely:

• Big Data Management Module

• AI Models Integration component

• Interoperable Marketplace

• Services Workbench

The Big Data Management Module is one of the core components, which is responsible for

supporting both batch and real-time data ingestion workflows, data storage, and curation processes.

Leveraging MinIO’s [17] object storage capabilities, the module efficiently manages unstructured data

and complex digital assets, including raw datasets, logs, and serialized AI models. MinIO’s support for

rich metadata and tagging enhances data discoverability and governance, facilitating seamless

integration with AI workflows and downstream services. Its scalable architecture ensures high

performance and reliability, meeting the demands of diverse energy sector use cases. Additional

technologies considered for this module include RabbitMQ [19], used for event-driven data ingestion,

and Apache NiFi [20], a flow-based tool for orchestrating complex data pipelines. The module supports

clean, reliable, and policy-compliant data circulation across the TwinEU platform.

Building upon the foundational role of the Big Data Management Module, the AI Models

Integration component facilitates the discoverability and reuse of AI models developed to address

data-driven challenges, such as forecasting, elasticity profiling, and behavioural analytics. The

emphasis of this component is on registering and exposing these models through structured

metadata, enabling stakeholders to locate relevant tools that match their analytical needs and

available datasets. Its role is to provide a federated view into AI capabilities across the TwinEU

ecosystem, ensuring traceability, interoperability, and integration readiness.

To enable a broader interaction with the available data and services, the Interoperable

Marketplace acts as the interface for discovery and access. This marketplace extends the concept of a

traditional federated catalog by enriching it with metadata about services, datasets, and AI models

enhancing searchability and access control. Aligned with IDSA principles, it allows stakeholders to

explore interoperable offerings through a unified interface, supporting an elevated level of

automation and governance over access and usage rights.

Finally, the Services Workbench serves as the orchestration and execution layer where

containerized services can be deployed, managed, and monitored. Building upon the open-source

implementation delivered in the OneNet project, the Workbench includes all necessary components

D4.1 Integration and deployment of TwinEU platform

18

to enable the integration of data and services within a common execution environment. It provides a

user interface for service deployment and configuration, incorporates Kubernetes for orchestration,

and supports the secure exchange of data through integration with the federated connectors. This

component plays a crucial role in realizing a plug-and-play architecture where analytics and

visualization services can be easily instantiated and reused across use cases and stakeholder

environments.

3.2 Components Functionalities

The functionalities of the components form a comprehensive data and service infrastructure that

supports the core operational needs of the TwinEU platform. Together, they enable structured data

ingestion, enriched metadata discoverability, secure service orchestration, and continuous monitoring

and evaluation, while remaining extensible and interoperable across the federated ecosystem.

• Data Ingestion and Management: The Big Data Management Module accommodates both real-

time and batch data ingestion. Real-time ingestion is supported through message queues using

RabbitMQ, while batch data upload is enabled via direct interaction with MinIO’s S3-compatible

API. Apache NiFi is optionally used to orchestrate complex flow-based data pipelines across

multiple sources and formats. Additionally, metadata tagging and lifecycle management are

applied to incoming datasets to ensure traceability, management and compliance with usage

policies.
• Model and Service Discoverability: Discoverability is enabled through a federated catalogue that

spans AI models, datasets, and services. Metadata schemas are used to describe technical and

functional characteristics such as capabilities, input/output formats, and access conditions.

Descriptive metadata and field-level annotations allow precise filtering and effective

model/service matchmaking based on stakeholder needs. The marketplace interface supports

attribute-based access control, aligning with the interoperability and governance objectives

promoted by IDSA.
• Containerized Execution and Evaluation: The Services Workbench supports dynamic deployment

and execution of containerized services. Services are orchestrated using Kubernetes and Helm,

building on the OneNet Workbench foundation. A user interface allows stakeholders to configure

services, select relevant datasets, and define execution parameters. During runtime, the platform

enables performance monitoring and resource usage tracking, supporting service evaluation,

reproducibility, and auditability.
• Visualization and Analytics: Integrated observability tools allow platform users to analyse

outcomes and monitor system behaviour in real time. Grafana and Prometheus dashboards

provide visual access to service outputs, system health indicators, and operational trends.
• Extensibility and Security: The TwinEU architecture is designed for modular expansion and secure

integration. Services can be onboarded with minimal configuration, ensuring continued

interoperability across the platform. Secure APIs enforce authentication, authorization, and data

usage policies. The Big Data Management component, based on MinIO, is protected using

Keycloak as its Identity and Access Management (IAM) module, enabling fine-grained access

control. The overall design supports trusted and sovereign data sharing among participants.

3.3 Deployment

The deployment strategy adopted in this task follows a modular, container-based architecture that

supports flexibility, scalability, and interoperability across the TwinEU ecosystem. It is designed to

enable the seamless integration of the core components—Big Data Management Module, AI model

D4.1 Integration and deployment of TwinEU platform

19

integration, Interoperable Marketplace, and Services Workbench—within heterogeneous

environments and infrastructures.

A dockerized approach is being followed to encapsulate each component into self-contained

services, ensuring consistency in configuration, portability, and reproducibility. The architecture

facilitates progressive deployment, allowing each component to be integrated and evolve

independently while remaining aligned with the overarching interoperability framework of the

platform.

The deployment setup supports infrastructure-agnostic hosting, enabling partners to instantiate

components locally or in cloud environments, depending on their operational requirements.

Configuration parameters are externalized, promoting ease of adaptation and future extension. As

development progresses, additional containers, orchestration scripts, and configuration mechanisms

will be introduced to realize the full vision of a unified, interoperable, and secure data and service

layer. This approach ensures that the TwinEU platform remains extensible and future-ready,

supporting continuous integration of new services, evolving stakeholder needs, and the federated

operation of DTs at both local and pan-European levels.

D4.1 Integration and deployment of TwinEU platform

20

4 Interactive augmented exploration of TwinEU DT

Virtual Reality (VR) has emerged as a transformative medium for exploring complex data and

environments through immersive, interactive experiences. Real-time VR visualization applications

require high-performance systems to maintain a sense of presence and fluid interaction. This chapter

describes the implementation of the XR Framework of TwinEU Platform, which supports high-quality,

real-time, immersive DT visualization experiences. The main objectives of the XR Framework are:

• Enable multiuser XR environments for enhanced collaboration and decision-making.

• Facilitate interactive data visualization using VR approach.

• Enhance data accessibility and usability through advanced visualization and validation services.

• Integrate Unity3D-based immersive workbench as a plugin, providing an intuitive and simplified

workflow.

4.1 Components Description

The preliminary activity for the design of the XR Framework was an in-depth analysis about XR

technologies for the implementation of a collaborative multi-user visualization and validation

framework. For the scope of the framework the VR technology has been taken into consideration.

4.1.1 VR Technologies: State of the Art and main requirements

4.1.1.1 Key Features of Real-Time VR Visualization Applications

Real-time VR visualization systems are defined by the following essential capabilities:

• Immersive 3D Environment

Users are placed within stereoscopic, spatial environments that deliver a strong sense of depth

and scale, surpassing the limitations of traditional 2D interfaces.

• Real-Time Rendering

High frame rates (typically ≥90 Hz) ensure fluid interaction and mitigate motion sickness,

especially during rapid head or body movements.

• Interactive Exploration

Users can navigate virtual spaces and manipulate content via VR controllers, hand tracking, or

voice commands, enhancing engagement and usability.

• Data Integration

Applications often visualize large, dynamic datasets sourced from simulations, sensors, CAD/BIM

models, or enterprise systems, requiring robust real-time processing.

• User Presence

A successful VR experience maintains a strong sense of “being there” through responsive

tracking, high-fidelity visuals, and synchronized audio-visual feedback.

• Multi-User Collaboration

Advanced solutions support multiple simultaneous users, enabling remote collaboration and

shared decision-making within immersive environments.

4.1.1.2 Technical Requirements for VR Visualization

Developing effective VR applications entails meeting several stringent technical requirements:

D4.1 Integration and deployment of TwinEU platform

21

• High Computational Power

Real-time rendering and data processing demand robust GPU/CPU capabilities, especially for

complex geometry or dynamic simulations.

• Low Latency

System responsiveness—measured in milliseconds—is critical to preventing motion sickness and

ensure natural interactions.

• Optimized Data Pipelines

Efficient loading, caching, and streaming mechanisms are required to handle large 3D datasets

or real-time telemetry.

• Robust Tracking

Precise 6DoF tracking of head and hands is essential for maintaining spatial alignment and

interaction fidelity.

• Ergonomics and Comfort

Hardware must support extended use without causing discomfort, fatigue, or strain, especially in

professional or training settings.

4.1.1.3 Development Platforms for VR Applications

Multiple platforms are available for building VR visualization applications, each offering distinct

benefits. These are presented in Table 1:

Table 1: VR Applications Platforms

Platform Description Pros Cons

Unity[21] Cross-platform game engine with

XR Interaction Toolkit and

extensive VR support

Easy to use; strong

asset pipeline;

community support

Requires optimization for

high-performance VR

Unreal

Engine[22]

High-end game engine with

advanced rendering (Nanite,

Lumen), ideal for photorealistic VR

Top-tier graphics;

blueprint scripting;

built-in VR tools

Steep learning curve;

resource-intensive

Native (C++,

Vulkan) [30]

[31]

Low-level programming for

maximal control via

OpenGL/Vulkan

Fine-grained control;

best performance

High complexity; slower

development

WebXR[23] Browser-based standard for VR/AR

experiences

No install needed;

cross-platform;

accessible

Limited access to

hardware features;

performance constraints

4.1.2 SDKs, Platforms, and Tools for VR Visualization and Collaboration

This section provides a comprehensive overview of the key software development kits (SDKs),

platforms, and frameworks used for developing immersive VR visualization and collaboration

applications, with a particular focus on OpenXR [24] and Unity-based solutions. It includes a

comparative analysis of major VR development stacks and networking options for real-time multi-user

experiences.

4.1.2.1 OpenXR: The Unified Interface for XR Development

OpenXR [24], maintained by the Khronos Group, is an open, royalty-free API standard that

simplifies VR and AR development by offering a unified interface to access a broad range of XR

D4.1 Integration and deployment of TwinEU platform

22

hardware. It is designed to support application portability and reduce platform-specific code

dependencies.

Key Benefits of OpenXR

• Cross-Platform Compatibility: Enables developers to target multiple XR devices from a single

codebase.

• Hardware Agnostic: Abstracts hardware-specific implementations to support a wide range of

current and future devices.

• Improved Performance: Facilitates more direct communication with hardware, improving latency

and rendering speed.

• Ecosystem Growth: Encourages industry-wide interoperability by aligning hardware vendors and

platforms around a common standard.

While many legacy applications still depend on proprietary SDKs (e.g., Oculus SDK, SteamVR SDK),

new development trends favour OpenXR due to its enhanced portability and future-proof design.

4.1.2.2 Meta SDK (Oculus Integration): Optimized for Quest Devices

Meta’s SDK [25] (formerly Oculus Integration) provides comprehensive access to hardware-specific

features on Quest devices (Quest 2, Quest 3, Quest Pro). Used in conjunction with Unity, it offers

native support for hand tracking, passthrough, spatial anchors, and other features that enable high-

performance applications tailored for Meta hardware.

Capabilities include:

• Integration with Unity for seamless hardware interaction

• Support for hand tracking, eye tracking, haptics, and MR passthrough

• Meta XR Plugin (OpenXR backend) for optimized rendering

• Platform SDK features such as voice services, avatars, and cloud anchors

4.1.2.3 Comparison of Leading VR Development Platforms

Table 2 summarizes the most prominent VR visualization tools and their strengths and limitations:

Table 2: Leading VR Development Platforms

Tool / Solution Development Platform Pros Cons

Unity + OpenXR Unity Engine - Cross-platform support-

Strong community- Good for

multiplayer- GLTF support- XR

Interaction Toolkit

- Needs optimization-

VR UI requires custom

work

Unity + Meta

SDK (Oculus

Integration)

Unity Engine + Meta SDK - Native support for Quest

hardware- Hand, eye tracking,

passthrough- Optimized

rendering- XR Interaction

Toolkit

- Meta-specific- Quest

hardware limits

Unreal Engine 5

+ OpenXR

Unreal Engine 5 - High fidelity (Lumen, Nanite)-

Blueprint scripting- Pixel

Streaming

- Steep learning curve-

High system

requirements- Complex

deployment

D4.1 Integration and deployment of TwinEU platform

23

NVIDIA

Omniverse XR

USD-based, connects to

Unity/Unreal/Blender

- Real-time RTX rendering- USD

interoperability- Cloud

collaboration support

- Requires RTX GPUs-

Enterprise-oriented-

Learning curve for USD

Varjo Reality

Cloud + Base

Varjo Hardware + Varjo

Base Software

- Human-eye resolution-

Eye/hand tracking- Remote

visualization

- Very high cost-

Hardware-specific- Not

indie-friendly

Blender + VR

Scene Inspect

Blender (OpenXR

integration)

- Free & open-source- Easy for

asset inspection- Lightweight

- Basic VR interactivity-

No networking or app

logic

Mindesk Plugin for Rhino,

Grasshopper, SolidWorks

- Real-time VR in CAD-

Parametric updates- Good for

walkthroughs

- Paid software- CAD-

specific- Limited

interaction options

4.1.2.4 Networking Options for Multiplayer VR

When developing multiplayer VR applications, choosing the appropriate networking solution is

critical. Table 3 presents a comparative overview of three major Unity-compatible networking stacks:

Table 3: Networking Options for Multiplayer VR

Feature/Aspect Mirror Photon Unity

Networking (PUN)

Unity Netcode for

GameObjects (NGO)

Type Open-source, self-hosted,

high-level

Commercial, managed

cloud

Unity Official, self/relay-

hosted, high-level

Cost Free Free tier, then paid by

CCU

Free core, usage-based for

Unity Relay

Server Hosting Self-hosted Exit Games managed

cloud

Self-hosted + Unity Relay

Scalability Manual scaling Excellent (auto-scaled) Good with Unity

Relay/Multiplay

Ease of Use Good, strong community Very good, detailed

tutorials

Good, Unity-integrated

Development

Model

Client-server Client-server (semi-

authoritative)

Server-authoritative

recommended

VR Focus General-purpose General-purpose General-purpose

Persistence Custom implementation Custom implementation Custom implementation

Data Sync RPCs, SyncVars,

NetworkTransform

RPCs, PhotonViews,

TransformView

RPCs, NetworkVariables,

NetworkTransforms

Community Active open-source Large official support

community

Growing Unity community

Unique Features Custom transport layer Fusion (ECS), Realtime

low-level API

Client-side prediction,

authoritative sync

Summary of Pros and Cons:

• Mirror

o Pros: Fully open-source, self-hosted, highly customizable

o Cons: Requires advanced server management; lacks built-in cloud features

• Photon Unity Networking (PUN)

D4.1 Integration and deployment of TwinEU platform

24

o Pros: Simplifies deployment with managed cloud, well-supported

o Cons: Paid plans for scale, limited server control

• Unity NGO

o Pros: Official Unity solution, good integration, supports relay/lobby

o Cons: Newer ecosystem, learning curve for authoritative game models

4.1.2.5 Unity as the Optimal Platform for VR Visualizers

In the context of developing a multiplayer VR visualizer, the choice of Unity over other available

solutions—such as Unreal Engine or custom-built platforms—is driven by a combination of factors that

effectively meet the specific demands of interactive, real-time virtual reality experiences involving

multiple users. Unity often stands out as the most suitable option due to several technical and

operational advantages.

First, Unity provides a highly efficient workflow for VR development, with native support for a wide

range of headsets through integration with OpenXR and platform-specific SDKs (e.g., Meta Quest,

SteamVR, Pico). Tools such as the XR Interaction Toolkit enable rapid implementation of common VR

interactions—including object manipulation, teleportation, and UI handling—accelerating

development timelines, especially for visualizers where interaction with 3D content is essential. On

the multiplayer side, Unity offers robust networking capabilities through Netcode for GameObjects

(NGO), which is optimized for server-authoritative, real-time applications. This ensures reliable

synchronization of user positions, interactions, and shared environments, which is fundamental in

collaborative VR contexts. Additional services like Unity Relay and Lobby further simplify session

management and network traversal, facilitating smoother user connections across different network

configurations. While Unity NGO is not designed for large-scale MMOs, it can effectively support a

substantial number of concurrent users, making it well-suited for collaborative scenarios such as

design reviews or walkthroughs in virtual environments. From a visualizer perspective, Unity's asset

pipeline is highly optimized for importing and managing complex 3D models from CAD or BIM

software—thanks in part to tools like Unity Industry and Unity Reflect—allowing for efficient handling

of architectural, engineering, or industrial designs. Furthermore, Unity provides comprehensive

profiling and optimization tools to ensure the high and consistent frame rates required for

comfortable VR experiences, particularly on standalone devices such as the Meta Quest. The flexibility

of Unity’s UI system (Canvas) also enables the creation of both traditional and immersive spatial

interfaces, which are crucial for intuitive navigation and interaction in VR environments. Unity’s real-

time engine allows users not only to view models but also to interact with them—changing materials,

triggering animations, toggling layers, or collaboratively editing scenes—thereby enhancing the

interactivity of the experience.

Lastly, Unity benefits from a vast ecosystem and an active developer community. The Unity Asset

Store offers a broad library of VR-specific assets, tools, and networking modules, reducing

development time. Its use of C#, a widely adopted and accessible object-oriented language, further

lowers the entry barrier for development teams. While alternatives like Unreal Engine may offer

superior visual fidelity and are often chosen for cinematic or AAA-grade VR experiences, they tend to

have steeper learning curves and higher performance requirements. Custom-built solutions, though

potentially powerful, typically demand significant engineering effort and are viable only in highly

specialized projects with ample resources. In conclusion, Unity presents a balanced and mature

platform for developing multiplayer VR visualizers. Its native VR support, powerful networking tools,

optimized asset handling, and strong community support make it a pragmatic and effective choice for

building collaborative, immersive environments for design review, training, or product visualization.

D4.1 Integration and deployment of TwinEU platform

25

4.1.2.6 Recommended Stack: Unity + Meta SDK for Quest

For projects focused on immersive 3D visualization and collaboration on Meta Quest devices, Unity

combined with the Meta SDK offers the most balanced solution. Unity provides a flexible development

environment with broad industry adoption, while Meta’s SDK ensures deep hardware integration,

optimized rendering, and access to platform services like voice chat and entitlement checks.

Key advantages include:

• Seamless hand and eye tracking, passthrough MR, and spatial anchors.

• Scalable multiplayer with Unity networking tools (NGO, Relay, Lobby).

• Efficient CAD/BIM import via Unity Industry/Reflect and GLTF support.

• Full control over rendering pipeline, UI/UX, and asset workflows.

This stack is particularly well-suited for applications in design review, education, engineering, and

collaborative virtual environments.

4.2 Features & Functionalities

4.2.1.1 XR Client for Unity

The XR Client for Unity (XRCU) is the core module of the TwinEU XR Framework. It is a modular,

real-time multi-user framework built on the Unity 3D platform, designed to enable immersive

collaboration in both co-located and remote scenarios.

Figure 4: XR Client for Unity

It supports dynamic manipulation and synchronization of digital assets through real-time

networking, leveraging open standards such as OpenXR and glTF [26] to ensure cross-platform

compatibility and scalability. Targeted primarily at the Meta Quest headset, the XRCU integrates the

Meta SDK to establish a shared world origin, enabling seamless colocation experiences while

guaranteeing optimal device performance and access to hardware-specific features. The architecture

is composed of specialized modules (Figure 4), each responsible for a critical function: user interaction,

networking, scene management, asset streaming, input handling, and spatial awareness.

Scene Config

At the core of the setup process is the Scene Config module, which utilizes a JSON-based

configuration file to define the XR environment. This includes specifying GLTF models, environmental

lighting, interaction behaviour, and multiplayer roles. The use of external JSON allows real-time scene

updates without altering application code, enhancing flexibility and maintainability. This configuration

is parsed at runtime by the JSONParser class within the XR module, which serves as the central

orchestrator.

XR Module

D4.1 Integration and deployment of TwinEU platform

26

The XR module oversees rendering, multiplayer communication, and runtime asset management,

and ensures synchronized updates and interactions across users. The JSONParser extracts structured

data from the Scene Config, initiates asset downloads, configures interaction settings, and dynamically

assembles UI elements based on the scene context.

Colocation

The Colocation module ensures that multiple users can share the same physical and virtual space,

a critical capability for collaborative design, mixed reality training, and multiplayer scenarios. This is

achieved through the establishment of a Shared Spatial Reference (Master Anchor), typically

implemented via the Meta SDK’s shared world origin. Other approaches—such as fiducial markers or

cloud-based anchors—are limited by hardware compatibility or deprecated services, making the

platform SDK the most viable solution for the first release.

User Interface (UI) and Interaction Module

The User Interface (UI) and Interaction Module are fundamental parts of the XRCU system, shaping

how users engage with the virtual environment and the 3D content within it. Designed with flexibility

and contextual adaptability in mind, these modules offer an intuitive and immersive user experience,

whether the user is navigating a complex engineering model, collaborating with others, or

manipulating 3D assets in real time.

At the heart of the UI module is the dynamic UI system, which is entirely driven by the scene

configuration specified in a JSON file. Instead of hardcoding fixed controls into the application, the UI

is generated and adapted at runtime based on the specific requirements of the current scene. This

means that if a user loads a model that supports sectioning or exploded views, corresponding tools

automatically appear within the interface. Conversely, in simpler scenes, only essential controls are

shown—resulting in a clean, streamlined interface that avoids overwhelming the user with

unnecessary elements. The UI is built using Unity’s native 3D UI system, which allows for optimized

rendering performance and seamless integration with the XR environment. It supports both hand

tracking and controller-based input, ensuring broad compatibility with different user preferences and

hardware capabilities. Menus, toolbars, and interaction panels are presented in a spatially aware

manner, meaning they can be placed and interacted with in the 3D space around the user, enhancing

accessibility and immersion.

Complementing the UI is the Interaction System, which defines how users can manipulate and

engage with 3D objects in the environment. Standard interaction features include grabbing, rotating,

scaling, and moving objects, all made possible through the Meta SDK’s robust input handling for hand

and controller tracking. These core interactions are intuitive and responsive, allowing users to

manipulate digital assets as if they were physical objects. Beyond basic manipulation, the system also

includes Custom Interactions tailored for advanced use cases. Features like Sectioning, which lets

users slice through models to view internal structures, and Exploded Views, which break complex

assemblies into their component parts, expand the range of XR applications. These tools are especially

valuable in training, product design, and engineering, where detailed inspection of objects is required.

To support collaborative use, the interaction system also manages object ownership. When a user

interacts with an asset, the system assigns temporary ownership, preventing others from

manipulating the same object simultaneously. This behaviour is coordinated using Unity’s networking

framework and is essential for maintaining synchronization and avoiding conflicts in multiplayer

sessions.

D4.1 Integration and deployment of TwinEU platform

27

Multiplayer

The Multiplayer Module lies at the core of the collaborative XR experience, enabling multiple users

to interact in a shared virtual environment in real time. This module is designed to support both co-

presence and synchronized interactions by integrating matchmaking, session management, and real-

time communication features. To oversee communication and synchronization, the module relies on

Unity’s Netcode for GameObjects (NGO) [27]. This framework is responsible for managing

connections, distributing ownership of objects, and synchronizing data across clients. It supports low-

latency communication through direct peer-to-peer links or relay servers, depending on network

conditions.

A critical aspect of the multiplayer module is its ability to support runtime player entry. New users

can join a session that is already in progress, and the system ensures they receive a fully synchronized

scene. The integration with the GLTF Importer means that any 3D models spawned dynamically during

the session are also instantiated and networked for late joiners. Multiplayer interactions—such as

grabbing, scaling, or sectioning 3D models—are managed through ownership and synchronization

mechanisms. When a player begins interacting with an object, the system assigns temporary

ownership using the OwnershipBehaviour logic, ensuring conflict-free manipulation. Meanwhile, the

SelectionManager tracks ongoing interactions to maintain a consistent state across all users. In

essence, the Multiplayer Module transforms a single-user XR experience into a fully collaborative

space, where presence, communication, and interaction are synchronized in real time. Its modular

structure, based on industry-standard networking tools and custom XR logic, allows for scalable,

stable, and intuitive multi-user scenarios—paving the way for rich, immersive shared experiences.

Matchmaking

A seamless multiplayer experience is essential for immersive XR environments, and the XRCU

addresses this need through an integrated matchmaking system that automatically connects users

based on a set of predefined conditions. Rather than requiring users to manually select sessions or

coordinate externally, the system intelligently manages session discovery, joining, and creation behind

the scenes. When a user launches the application, the matchmaking logic begins by searching for

active sessions that match specific parameters. These parameters typically include the scene

configuration in use, the user’s geographical region, and the number of players currently connected

to a session. If an existing session meets these criteria, the user is seamlessly connected, without any

need for manual input. However, if no compatible session is found, the system does not leave the user

stranded. Instead, it automatically creates a new session, or "lobby", which becomes available for

others to join. This new lobby can be dynamically discovered by other users who share the same

matching criteria. The user who initiates the session assumes the role of host and can define certain

configuration aspects of the experience, such as which assets are available on the scene or how user

interactions are managed. The underlying networking infrastructure is powered by Unity’s NGO, a

robust framework that manages the complexities of multiplayer connections. NGO takes care of

synchronizing player states, handling connection events, and maintaining consistency across the

session. Depending on the quality of the network connection and setup, the system can switch

between direct peer-to-peer connections or routing communication through relay servers to ensure

the best possible latency and stability. An important feature of this system is its ability to support

dynamic player entry. New participants can join an ongoing session at any time. When this happens,

the system ensures that all relevant scene data—such as the state and position of objects, avatars,

and interactions—is correctly synchronized for the new player. This is made possible through

coordination between the matchmaking system and the GLTF Importer, which manages the

instantiation and networking of 3D assets, even after the session has already begun.

D4.1 Integration and deployment of TwinEU platform

28

Runtime 3D Asset

The Runtime 3D Assets module is designed to dynamically load glTF models during runtime, rather

than preloading them at application startup. This strategy enhances performance by reducing initial

memory usage and allowing assets to be fetched only when needed, resulting in a smoother and more

responsive user experience. Many glTF models include nested objects or hierarchical structures. To

support multiplayer interactions with these sub-components, the system:

• Reconstructs the object hierarchy upon loading.

• Assigns NetworkBehaviour components to relevant child objects.

• Attaches interaction scripts to enable manipulation of individual parts.

This reconstruction ensures reliable, consistent interactions with complex models, allowing users

to engage with both the whole object and its individual components in a fully synchronized, networked

environment.

4.2.1.2 XRCU Architecture

Figure 5: XRCU Architecture

Figure 5 illustrates the high-level structure of the XRCU, highlighting the modular flow and

component interaction required to deliver collaborative, immersive XR experience on devices such as

the Meta Quest headset. At the centre of the architecture is the XR Core, which acts as the main

orchestration hub. It integrates and coordinates all modules involved in the XR experience—from

rendering and user interaction to multiplayer networking and runtime asset management. On the

input side, the Scene Config module retrieves a JSON-based configuration file from an external

repository (cloud). This file defines the setup of the virtual environment, including which 3D models

(in glTF format), interactions, lighting, and multiplayer settings should be used. The XR module parses

and applies these configurations to initialize the scene. Simultaneously, the Metadata module also

retrieves scene-specific data from an external JSON source, enriching the runtime environment with

additional information linked to 3D assets. The XR module drives several key subcomponents:

Multiplayer, which is subdivided into MatchMaking (for session management and user

connection) and Colocation (for aligning multiple users in a shared spatial reference using platform

SDKs like Meta’s). At its foundation, the module ensures that users can connect to a common session

D4.1 Integration and deployment of TwinEU platform

29

through the Matchmaking System, which automatically groups users based on shared scene

configurations and other criteria. This allows for dynamic creation and discovery of multiplayer

lobbies, ensuring that users can either join existing sessions or initiate new ones effortlessly. Once a

session is established, the Colocation component enhances the sense of shared presence by aligning

user positions and interactions within a common spatial frame. This is especially important in XR

environments, where spatial awareness and consistency are key to immersive collaboration.

Colocation ensures that all users perceive each other—and shared objects—in the same virtual space,

maintaining a coherent sense of orientation and distance.

Runtime 3D Assets, which manages the loading and synchronization of glTF models and their

associated metadata. This is closely tied to the Interactions and UI modules:

• Interactions manage how users manipulate the environment, supporting both standard and

advanced techniques like grabbing, rotating, sectioning, and exploding views, with support from

platforms like OpenXR and the Meta SDK.

• UI dynamically adapts the user interface based on the JSON scene configuration, using Unity’s 3D

UI system to display context-sensitive tools and menus.

The Rendering module transforms the virtual environment into a visual output suitable for XR

devices, and connects directly to the TouchPoint, representing the user’s view and interaction point

through the Meta Quest headset. Overall, this architecture promotes flexibility, real-time

configurability, and device-specific optimization by utilizing open standards (OpenXR, glTF) and

platform-specific SDKs (Meta SDK). It enables immersive, multi-user experiences with dynamic

content and UI, all centrally managed by the XR module for cohesive system behaviour.

4.3 Deployment

The application has been developed as a multiplayer experience, allowing users in the same

physical location to interact seamlessly within a shared virtual environment. To evaluate core features

such as real-time spatial synchronization, Meta Colocation, and multi-user interactions, it is strongly

recommended to evaluate the application with at least two Meta Quest headsets. This setup provides

a realistic scenario for validating synchronization accuracy, interaction responsiveness, and the overall

user experience. If users are not in the same physical location, the application still supports

multiplayer mode. However, Meta Colocation will be unavailable, and synchronization will instead

rely on standard network-based methods. A UI notification within the app will inform users that

Colocation is not active in their current session. The user second user (client) must use the UI on the

left-hand side to select the 'settings' option, accessible via the gear icon. Under ‘Developer Options’,

he should then select ‘Start without Colocation’. To gain access to the beta version of the XRCU and

enable Meta Colocation, follow the steps below:

Step-by-Step Beta Testing Procedure

1. Provide Meta Account Email

a. Share the email address associated with your Meta account with the development team.

b. This email is required to grant beta access through the Meta Developer Dashboard.

2. Receive Beta Invitation

a. After being added as a tester, you will receive an email invitation from Meta.

b. This email includes a link to join the beta program.

3. Accept the Beta Invitation

a. Open the invitation email and click the link provided.

b. Log in using your Meta account credentials.

D4.1 Integration and deployment of TwinEU platform

30

c. Accept any terms and conditions if prompted.

4. Enable Beta Access

a. Open the Meta Quest mobile app.

b. Go to Library > Apps and locate the application under the beta section.

c. Confirm that the app is listed and accessible for beta testing.

5. Download the Beta Application

a. On your Meta Quest headset, open the Meta Quest Store or navigate to Library.

b. Search for the application or locate it in your app list.

c. Download and install the beta version.

6. Grant Spatial Permissions for Meta Colocation

a. Meta Colocation requires access to Spatial Anchors for shared spatial experiences.

b. When prompted, grant all necessary permissions for spatial tracking.

c. Without these permissions, Colocation features will not function properly.

D4.1 Integration and deployment of TwinEU platform

31

5 Data Space adaptation to support the TwinEU
continuum

5.1 TwinEU Digital Twin Federator

Enabling a federated ecosystem for DTs in the energy sector a complex task, but TwinEU project

has a clear vision on it: implementing a Digital Twin Federator with main goals of:

• Integrating heterogeneous DT systems

• Orchestrating services for data and models sharing

• Incorporating real-world data to enhance simulation and analysis capabilities

To achieve these goals, the TwinEU DT Federator leverage on the Data Space concept for

supporting an interoperable and secure DT Federation with easy and effective integration of various

data sources and infrastructures. A dataspace-enabled structure for data and model sharing is a

pivotal element of the TwinEU architecture. It adapts the Data Space concept to the specific context

of TwinEU DT ecosystem, creating a trusted, sovereignty-preserving layer for data and DT model

exchange.

5.1.1 OneNet Data Space Framework

The TwinEU DT Federator extends and improves the OneNet Data Space Framework, (Figure 6) an

open-source Data Space solution tailored for the Energy domain, which support the standardized data

exchange among energy stakeholders at any level. At architectural level it includes two main

components: the OneNet Middleware and the OneNet Connector (Figure 7).

Figure 6: OneNet Data Space Framework

D4.1 Integration and deployment of TwinEU platform

32

Figure 7: OneNet Connector Architecture

The OneNet Middleware stands on top of the common infrastructure, ensuring secure and

standardized communication between assets, systems, data sources, models, and energy

stakeholders. This middleware facilitates seamless, efficient, and transparent sharing of data across

the entire ecosystem, creating the concept of Federated Data Space.

The OneNet Connector plays a crucial role in driving efficient data integration and exchange across

the energy sector. It implements the core features for a completely decentralized end-to-end data

exchange while maintaining full control over data access and usage. In addition, it communicates with

Middleware for onboarding and data service discovery. The Connector is the core of the IDS Reference

Architecture Model for implementing the concept of Data Space. It serves as the gateway for connect

existing systems and their data to an IDS ecosystem. Its architecture and functionalities are defined

by the IDS Reference Architecture Model (RAM) and specified by the certification criteria.

The Connector facilitates secure data exchange while enriching it with metadata, including

customizable usage conditions that can be defined, managed, and enforced directly within the

Connector. A key benefit of this approach is data sovereignty—ensuring organizations retain full

control over how their data is accessed and used. The metadata follows the IDS Information Model

ontology, maintaining standardized and structured information exchange. The IDS reference

architecture, with its decentralized data storage, enables seamless integration of data from various

sources while restricting access exclusively through other IDS Connectors. This decentralized and

controlled data-sharing approach guarantees that data owners always determine who can use their

data, under what conditions, and for what purposes, reinforcing both security and trust in data-driven

collaborations.

5.1.2 Evolution from OneNet Framework and First Release

In the context of T4.5, the OneNet Framework had evolved as DT Federator for supporting the DT

federation and several additional features such as:

• Technical Interoperability: Data Space Protocol

• Semantic Interoperability: Extension of Vocabulary and Standards

• DT support: Data and Models Exchange

D4.1 Integration and deployment of TwinEU platform

33

• New technologies, protocols and standards for Real-time data exchange

This first release of the DT Federator, integrated within the TwinEU Platform focused on

implementing the Data Space Protocol for ensuring a high level of interoperability in the context of

Energy Data Space. All the Data Space Protocol (DSP) modules and interfaces were successfully

integrated in a new version of the OneNet Connector for DTs, with a dedicated UI and a new Data

Application, which allow the integration of legacy systems. The remaining mentioned features will be

implemented in the next period of the project and reported in the coming deliverables.

5.2 Features & Functionalities

The main functionalities of the initial version of the OneNet Connector for DTs, implemented during

the first period of the project, can be structured into 5 steps:

1. Configuration (Onboarding)

2. Creation of Data Offering (Indexing)

3. Data Catalogue (Discovery)

4. Subscription and access management (Negotiation)

5. Provisioning and Consuming Data (Data Exchange)

Figure 8 provides a high-level sequence diagram of the five main phases between Data Provider

and Data Consumer, showing the integration of the OneNet Middleware and the OneNet Connector.

Configuration (Onboarding)

This initial step consists of setting up the data space environment via the OneNet Connector. It

includes configuring the necessary endpoints, defining participant identities and ensuring that all

participants are properly onboarded into the Data Space. This step ensures that the data space is

secure and ready for use.

Creation of Data Offering (Indexing)

In this step, Data Providers create and index their data offerings. This involves describing the data,

setting metadata, and making it discoverable within the OneNet Middleware. Indexing helps in

organizing the data so that it can be easily searched and accessed by users through the Data Catalogue.

Data Catalogue (Discovery)

The Data Catalogue is a centralized repository where all indexed data offerings are listed. Users can

browse, search, and discover data sets that are relevant to their needs. This step is crucial for

facilitating easy access to data and ensuring that users can find the data they need efficiently. Within

the OneNet Middleware, the Data Catalogue also provides categorization mechanisms and a set of

vocabularies to be applied to any data offering. The Data Catalogue is implemented in a standardized

way, following the Data Space Protocol specifications. The DSP indicate the Catalogue as a collection

of entries representing Datasets and their Offers that is advertised by a Provider Participant. The DSP

Catalogue uses the standard DCAT model [28].

Subscription and access management (Negotiation)

Once Data Consumers find the data they need, they can subscribe to the data offerings. This step

involves negotiating access terms, such as usage rights, and data sharing agreements. Effective

subscription and access management ensure that data is shared securely and in compliance with

agreed-upon terms. The negotiation step is implemented in accordance with the Data Space Protocol

negotiation steps and workflow, which includes six distinct steps, as shown in Figure 9 below.

D4.1 Integration and deployment of TwinEU platform

34

Provisioning and Consuming Data (Data Transfer)

In the final step, the subscribed data is provisioned to the users. This involves the actual transfer

of data from the provider to the consumer, ensuring seamless and efficient data exchange in an end-

to-end manner, without passing data through any central system. In the DSP protocol the Data

Transfer can be implemented in two-way approach:

• Push process – provider push data on consumer service

• Pull process – consumer request data to provide

Figure 8: TwinEU Data Space Business Process

D4.1 Integration and deployment of TwinEU platform

35

Figure 9: Data Space Protocol Negotiation Steps [29]

5.2.1 Interfaces – REST APIs and GUI

5.2.1.1 Connector APIs

Table 4: Configuration and Onboarding

Name URL Method

User Authentication /api/user/auth POST

User Info /api/user/current GET

Get Connector Settings /api/custom-query/data-objects/?id=e48046c9-0b94-41d2-9ad4-

206f1604b821

GET

Save Connector Settings /api/custom-query/data-objects/?id=e48046c9-0b94-41d2-9ad4-

206f1604b821

POST

Table 5: Data Indexing and Catalogue

Name URL Method

Cross Platform Service

List

/api/datalist/cross_platform_service/page//{{page-number}} GET

D4.1 Integration and deployment of TwinEU platform

36

Cross Platform Service

Get by id

api/dataset/cross_platform_service/{{entity_id}} GET

Offered Services List /api/datalist/my_offered_services/page/{{page-number}} GET

Push Offered Services List /api/datalist/my_push_offered_services/page/{{page-number}} GET

Offered Services Get By Id /api/dataset/my_offered_services/{{entity_id}} GET

Offered Services

Create/Update

/api/dataset/my_offered_services POST

Subscription List /api/datalist/my_subscriptions/page/{{page-number}} GET

Push Subscription List /api/datalist/my_push_sub/page/{{page-number}} GET

Subscription Get By Id /api/dataset/my_subscriptions/{{entity_id}} GET

Subscription Create /api/dataset/my_subscriptions POST

Request List /api/datalist/requests_on_offered_services/page/{{page-

number}}

GET

Push Request List /api/datalist/push_subscription/page/{{page-number}} GET

Request Get By Id /api/dataset/requests_on_offered_services/{{entity_id}} GET

Request Create /api/dataset/requests_on_offered_services POST

Table 6: Negotiation and Data Transfer

Name URL Method

Data Provided List /api/datalist/data_provided/page//{{page-number}} GET

Data Provided Get By Id /api/dataset/data_provided/{{entity_id}} GET

Data Provided Create /api/dataset/data_provided POST

Data Consumed /api/datalist/data_consumed/{{page-number}} GET

Push Data Consumed /api/datalist/push_data_consumed/{{page-number}} GET

Data Consumed Get By Id /api/dataset/data_consumed/{{entity_id}} GET

Timeline List /api/timeline/data/?id=d6342c52-8995-4a0d-b42d-

894ffc600a3d&enabled=1

GET

5.2.1.2 Data Space Protocol APIs

Table 7: Catalogue

Name URL Method

Add Catalog /api/v1/catalogs POST

Get Catalog /api/v1/catalogs/{{catalog_id}} GET

Update Catalog /api/v1/catalogs/{{catalog_id}} PUT

Delete Catalog /api/v1/catalogs/{{catalog_id}} DEL

Get All Catalog /api/v1/catalogs/ GET

Table 8: Negotiation

Name URL Method

[C] Start negotiation /api/v1/negotiations POST

[P]Find Contract

Negotiation

/api/v1/negotiations?role=provider GET

[P] Approve

negotiation

/api/v1/negotiations /{{contract_id}}/approve PUT

[C] Verify negotiation /api/v1/negotiations /{{contract_id}}/verify PUT

[P] Finalize negotiation /api/v1/negotiations /{{contract_id}}/finalize PUT

D4.1 Integration and deployment of TwinEU platform

37

[C/P] Terminate

negotiation

/api/v1/negotiations /{{contract_id}}/terminate PUT

[C] Get agreement id /api/v1/negotiations?role=consumer GET

Table 9: Data Transfer

Name URL Method

[C] Find Initialized

Transfer Process

/api/v1/transfers?state=INITIALIZED&role=consumer GET

[C] Request transfer /api/v1/transfers POST

[P] Find Transfer

Process

/api/v1/transfers?role=provider GET

[P] Start transfer /api/v1/transfers{{transfer_id}}/start PUT

[C] Download data /api/v1/transfers{{transfer_id}}/download GET

[C] View data /api/v1/transfers{{transfer_id}}/view GET

[C] Complete transfer /api/v1/transfers{{transfer_id}}/start PUT

[P] Suspend transfer /api/v1/transfers{{transfer_id}}/suspend PUT

[P] Terminate transfer /api/v1/transfers{{transfer_id}}/terminate PUT

5.2.1.3 Graphical User Interface (GUI)

Login

The Login page allows users to access to the OneNet connector from the local system. The module

is connected to the OneNet Middleware for sending the credentials and authenticate the connector

in the Data Space instance.

Figure 10: Connecter Login Page

D4.1 Integration and deployment of TwinEU platform

38

Data Catalogue

This section displays the Catalogue, which consists of a list of offered services from other users.

The Offering are categorized and described using metadata. It is possible to find offerings filtering and

querying them with several parameters.

Figure 11: Data Catalogue

Create Data Offering

The services section list shows all services created by the user. In this section is possible to create

new Data Offering and publish it into the Data Catalogue.

Figure 12: Create Data Offering

D4.1 Integration and deployment of TwinEU platform

39

Subscription

From the subscription section it is possible to request access to a specific Data Offering from the

Catalogue. Once the request from the Consumer’s OneNet Connector is submitted, a negotiation

phase with the Provider begins.

Figure 13: Subscribe to Offerings

Data consuming

Once a data request is approved and the negotiation phase is completed, the Consumer is

authorized to access and consume the data. It could also be done directly from the dedicated section

of the OneNet Connector GUI.

Figure 14: Consume Data

D4.1 Integration and deployment of TwinEU platform

40

5.3 Deployment

A complete documentation for deploying and installing the OneNet Connector is provided in the

TwinEU repository: https://github.com/TwinEU-Digital-Twin-for-Europe/data-space-connector.

The deployment process involves the use of Docker containers. The use of Docker guarantees not

only an easy deployment process and total portability of the solution, but also a high level of scalability

of the released applications.

The hardware and operating system prerequisites are:

1. A 64bit 2-core processor

2. 8GB RAM Memory

3. 50GB of disk space or more

The software prerequisites include:

1. Linux or Windows (preferably Server edition) Operative System (OS)

2. Docker and docker-compose;

OneNet Connector and its modules will be delivered utilizing the Docker containers functionalities.

Firstly, the Docker platform must be downloaded and installed accordingly to the OS of the server to

host the deployment. For the correct installation of docker and docker-compose, please refer to the

official guides: https://docs.docker.com/get-docker/

5.3.1 Docker Installation

To proceed with the installation of OneNet Connector, the user must use the docker folder of the

GitHub repository that contains all the necessary configuration.

1. The first step is to clone the code from TwinEU repository a specific folder energy-data-space-

connector, by typing:

mkdir energy-data-space-connector

cd energy-data-space-connector

git clone https://github.com/TwinEU-Digital-Twin-for-Europe/data-space-connector

2. There is the docker-compose.yml file located under the docker folder that contains all the

configuration of the Energy Data Space Connector containers. Go to that file by typing the

command:

cd energy-data-space-connector/docker

3. Start the containers with the below commands:

docker-compose up -d --build

4. To show logs use the command:

docker-compose logs -f

5. If no errors appear in the logs, the OneNet Connector has been successfully deployed on your

premises.

https://github.com/TwinEU-Digital-Twin-for-Europe/data-space-connector
https://docs.docker.com/get-docker/

D4.1 Integration and deployment of TwinEU platform

41

6 TwinEU platform development and integration

6.1 Introduction

The TwinEU Framework comprises three core horizontal layers, as defined in the TwinEU

Architecture [18], along with the Cybersecurity and Data Privacy that spans all three. The primary

objective of the TwinEU Framework is to deliver a modular architecture that facilitates secure,

scalable, and flexible interoperability among TwinEU participants. These modules provide essential

functionalities, including authenticated data access, establishment of secure communication channels

between participants, and interaction with a centralized registry containing metadata on available

datasets and services. Furthermore, the framework enables efficient discovery of data and services

and provides an intuitive user interface for system monitoring, configuration, and operational

management. The three layers of TwinEU Framework include:

• TwinEU Middleware – Serves as the core Integration platform. For the scope of this deliverable

the TwinEU Middleware and platform.

• TwinEU Federation of DTs - Forms the Data space ecosystem.

• TwinEU Service Workbench, Augmented Reality visualisation and AI & Data Marketplace.

At the core of the TwinEU system lies the TwinEU Middleware, which comprises of several crucial

components and functionalities detailed in the following section. The Decentralized Middleware acts

as a coordination layer that manages peer-to-peer data exchange among TwinEU stakeholders. Each

TwinEU stakeholder interacts with the TwinEU Middleware via its User Interface (Connector GUI) and

communicates with other participants through the OneNet Connector. This Connector manages

connectivity and data services, operating as an instance of the Decentralised Middleware and plays a

central role in establishing decentralized, peer-to-peer connections, facilitating data transfers

between providers and consumers. The OneNet Connector is the cornerstone of the TwinEU

Federation of Digital Twins since it enables the communication between them. Generally, the TwinEU

Framework operates as a central hub where participants (and DTs) can register themselves, their

services, and their data. This facilitates secure and trusted discovery and access by other authorized

entities within the ecosystem. Finally, the TwinEU Framework also incorporates the TwinEU Service

Workbench, which supports the registration, validation and testing of new services. This chapter

analyses the TwinEU Middleware/ platform, describing its interfaces, functionality, components and

its relationship with the OneNet Connector.

6.2 TwinEU Decentralised Middleware Components

The TwinEU Decentralised Middleware is a core and essential component of the TwinEU

Framework. Its principal function is to perform robust authentication of TwinEU participants, thereby

ensuring adherence to established data access control policies and privacy regulations. Serving as the

primary access interface to the broader TwinEU Framework, the middleware also facilitates the

establishment of secure, peer-to-peer communication channels among participants. It enables the

technical configuration of each participant’s TwinEU Connector, including parameters such as

metadata broker endpoint settings and related connectivity specifications. Finally, the TwinEU

Middleware contains the administrative components that manage and coordinate the

interoperability, sovereignty and authorization within the IDSA network. In more detail the

middleware contains the following components that are responsible for specific functionalities:

D4.1 Integration and deployment of TwinEU platform

42

• The Clearing House that serves as a trusted third-party component that logs data transactions

between participants to ensure transparency, accountability, and compliance with contractual

agreements. It provides verifiable audit trails for data exchanges, enabling secure and tamper-

proof evidence of all interactions within the data-sharing ecosystem.

• The Data and Service Catalogue that operates as a centralized registry where participants can

publish metadata describing their available datasets and services. It facilitates efficient discovery

and selection of data assets and capabilities by other participants, thereby supporting dynamic

and interoperable data exchange across the ecosystem.

• The Metadata Broker that acts as an intermediary that exposes and manages metadata related

to available data offerings and services from TwinEU participants. It enables participants to filter,

search, and retrieve information about published resources, thus supporting semantic

interoperability and efficient data discovery within the ecosystem.

• The Data access and Policies Service is responsible for validating the authentication of data

transfers and verifying that the direction of transmission complies with defined access policies. It

operates in accordance with IDSA specifications and interfaces directly with the TwinEU

Middleware. Additionally, it ensures that the appropriate data services are active and correctly

configured on the sender’s Connector to satisfy the operational and policy requirements of the

receiving participant. As a prerequisite for any data exchange, this service is executed first during

transmission initialization.

• Semantic Interoperability Enablers when ontology and semantic configurations are available, act

as data format guidelines, to enhance semantic clarity and interoperability among TwinEU

Participants. This contributes to overall data harmonization.

• The Configuration Tool ensures that every participant’s tool (Connector, service or platform) will

be properly integrated, registered and configured within the TwinEU Middleware. The

Middleware offers a graphical interface (Connector GUI) that serves to set the correct endpoints

of the Connector to establish connectivity, software updates and health monitoring.

Additionally, the TwinEU Middleware operates as an administrative tool that configures manages

and enables the operation of the OneNet connector. The Connector is the primary interoperability

component of the TwinEU System. Each TwinEU Participant deploys a dedicated instance of the

Connector, which operates as the gateway between the participant’s local environment and the

overarching TwinEU infrastructure, including the TwinEU Framework. This component is responsible

for executing a set of data services that collectively ensure secure data exchange, enforce data access

policies, validate data formatting, perform semantic enrichment, and maintain data quality in

accordance with system standards.

6.3 Interfaces & Functionalities

This section outlines the key functionalities and interfaces of the TwinEU Decentralised

Middleware, covering internal and external component integration. Additionally, this section

describes the functionalities of the TwinEU Middleware that are related the OneNet Connector. The

TwinEU Middleware contains crucial components for user identification, authorization and data access

and usage policies. The TwinEU Middleware distinguishes the following functionalities and the

corresponding interfaces.

• The Middleware manages the TwinEU participants registration and provides a secure list of the

already registered participants.

• The Middleware manages the access, identities and authorization of all participants.

D4.1 Integration and deployment of TwinEU platform

43

• The Middleware could potentially deploy an instance of the Clearing House. All the data

exchanged in the connector could be tracked through the Clearing House service.

• The Middleware deploys the Data Offerings Catalogue. Through this component the Middleware

manages and updates a data source catalogue.

• The Middleware provides an explorer for all the standard vocabularies and semantic standards.

The components with this specific functionality are categorized as part of the Semantic

Interoperability enablers.

Additionally, the TwinEU Middleware provides the following interfaces in order to perform its

functionality. Some of these interfaces include interfaces related to the connector. The connector

should be deployed by each TwinEU stakeholder and installed in the TwinEU Middleware.

Furthermore the Middleware is responsible to offer administrative and authorization services to the

Connector operation. The aforementioned interfaces are the following:

• Interface between data provider’s local connector and the TwinEU Middleware for metadata

exchange.

• Interface between TwinEU middleware and the data provider’s local connector authentication

policy and access.

• Registration of data information availability through an interface between local connector and the

context broker for metadata exchange. The Connector must provide a UI for the configuration of

the URIs.

• Discovery and request of data from the TwinEU data ecosystem through an interface between the

local connector and the broker for metadata exchange.

• Interface between local connectors for metadata exchange between a connector that operates as

data provider and one that operates as data consumer.

• Interface between data consumer’s local connector and third-party service or platforms within

the TwinEU ecosystem regarding access for data exchange/consuming data. The Connector is

responsible to register an external platform using REST APIs. Additionally, the Connector is capable

to identifying an external platform using REST APIs.

• Connection between data provider’s local connector and the TwinEU Middleware for setup of

authentication policy and data exchange configuration prerequisites.

• Interface between data provider’s local connector and the TwinEU Middleware for metadata

exchange.

The above Middleware functionalities (along with the connector GUI) are built upon a specific tool

which offers flexible and effective ways to customize and adjust functionality and user interface

dynamically, according to specific needs and requirements. This component is named SOFIA and

allows for the creation of GUIs and services through a user-friendly environment. The functionalities

and features that this administrative middleware offers to the TwinEU could be summarized as

follows:

• Creation of custom database schemas, tables and data relationships.

• Create, customize and adjust dashboards, menus, forms and lists.

• Create and customize users, roles and access controls. Access control functionality through the

configuration resource can assign access policies per user role, ensuring that the user’s data is

always secure and safe.

A more descriptive presentation of the features of SOFIA and a representative use case of SOFIA

can be found in the following link: https://github.com/european-dynamics-rnd/sofia?search=1 .

https://github.com/european-dynamics-rnd/sofia?search=1

D4.1 Integration and deployment of TwinEU platform

44

6.4 Integration Guidelines of the TwinEU Middleware

6.4.1 Prerequisites and Installation

To ensure a stable and efficient deployment of the TwinEU middleware component, the following

hardware, operating system, and software prerequisites must be met. These requirements are

intended to support the containerized architecture of TwinEU middleware, which is deployed using

Docker-based environments to simplify deployment, scaling, and updates.

6.4.2 Hardware Requirements

The minimum hardware specifications for a server intended to host TwinEU middleware are:

• Processor: Dual-core CPU (2 physical cores) or higher.

Recommended: Quad-core for improved performance under moderate-to-heavy loads.

• Memory (RAM): 4 GB minimum.

Recommended: 8 GB or more for better handling of multiple services and concurrent operations.

• Storage: At least 50 GB of free disk space.

Recommended: 100 GB or more, especially when dealing with large datasets, logs, or service

updates.

6.4.3 Operating System Requirements

TwinEU middleware supports deployment on the following server operating systems:

• CentOS 7 (64-bit)

• Windows Server (latest supported versions)

Notes:

• For CentOS systems, ensure SELinux is properly configured or disabled if necessary for Docker.

• System administrators should apply the latest security patches and updates before installation.

6.4.4 Software Requirements

In addition to the OS, the following software components must be installed and correctly

configured:

• Docker: Required for running TwinEU middleware services as containerized applications. Install

the latest stable version compatible with your operating system.

• Docker Compose: Used to define and run multi-container Docker applications. This is essential for

orchestrating the deployment of various TwinEU middleware modules and their dependencies.

6.4.5 Software Deployment Instructions

The TwinEU stakeholder should satisfy the requirements and subsequently follow the specific

instructions for the deployment of the TwinEU Middleware that are presented in the following link:

https://github.com/european-dynamics-rnd/OneNet/tree/main

After that the user should deploy the OneNet connector (see specific deployment guidelines above)

and configure the connection settings it through the connector user interface. Specifically, the user

should navigate to the connector settings through the User Interface menu and define the URLs of the

https://github.com/european-dynamics-rnd/OneNet/tree/main

D4.1 Integration and deployment of TwinEU platform

45

Local Api Url, Data App Url, Broker Url and Ecc Url. Those four connector applications are running on

the containers that the user should have already installed, so the URLs must be configured accordingly

in a specific way that is described in the following link:

https://github.com/TwinEU-Digital-Twin-for-Europe/data-space-connector

6.5 Testing Scenarios Methodology

At this stage (M18 of the project) the definition of testing scenarios analyses the principal attributes

that should be satisfied by the TwinEU system. The tests focus on verifying connectivity, security,

functionality, and compliance of the overall system architecture, ensuring that the middleware and

connector components operate as expected before moving to more advanced integration or

scalability tests. Specifically, the testing instances that are crucial for the first technological version

and implementation are the following:

• Environment Validation - Ensures that all the containers and variables are installed and running

properly in the set of the desired user’s environments without, errors, runtime dependencies,

false loaded environment variables and configuration files.

• Middleware Health and Connectivity - Ensures that the initial Middleware version is available and

accepts connections. This process includes the testing of internal APIs, attempt basic registration

of users or test the response formats.

• Authentication & Authorization - Checks that verifies security mechanisms are working for

participant access. This process includes attempts of unauthorized access to a secured endpoint,

token-based authentication via OAuth2/IDS Identity Provider and scenarios that check that the

middleware enforces data access policies correctly.

• Policy Enforcement Test - Secures that all the users obey to the predefined usage control policies

regarding the publishing, offering, consuming and deleting of data and services within the TwinEU

Platform.

• Connector Communication - Checks a minimal data exchange between two Connectors. This step

includes firstly the simulation of a contract request/subscription between two connectors and

subsequently the process of connector-to-connector file exchange.

• Service and Data Registration - Checks that validated whether services and data offerings can be

configured and shared through the Middleware and Connectors. That stage includes the

registration of dummy services or data, validation scenarios of the discovery mechanisms and the

minimal sharing of metadata between two sides.

• Logging – A check that ensures that there is a functional operational observability using functional

logs of participants activity within the Middleware and connector services.

• Error Handling and Recovery - Validates the resilience of the system to common errors and the

proper handling of them. The system should be capable of handle situations such as exceptions,

timeouts and fallback errors.

• Compliance check with IDSA Guidelines – Validates that the TwinEU architecture aligns with

usage control, message formats and metadata of the IDS standards.

The testing methodologies for the following development versions of the Middleware will be

presented in the deliverables that describe these future versions.

https://github.com/TwinEU-Digital-Twin-for-Europe/data-space-connector

D4.1 Integration and deployment of TwinEU platform

46

7 Integration & Development Plan of the TwinEU
framework

7.1 Overview of the Development Plan

The following development plan serves as an agile comprehensive guideline intended to support

development teams in achieving seamless integration of system components and services. This plan

is dynamic in nature, designed to remain flexible and adaptable in response to evolving requirements

and challenges encountered throughout the project lifecycle. The implementation activities and

integration processes are structured into three distinct development phases, aligned with the overall

project timeline. These phases are detailed in Table 10, Table 11, and Table 12, respectively.

Table 10: 1st Development Phase

 Name WP / Task Start End

A First Development Phase WP3, WP4 M1 M18

A.1 Definition of Tech Release Components WP3, WP4 M1 M12

A.2 Technical and Functional Requirements
definition & review

WP3 M1 M12

A2.1 Assessment of demo specific services and
functionalities

T3.2 M1 M12

A2.2 Analysis of requirements for DT federation
concept

T3.3 M1 M12

A2.3 Analysis of requirements for TwinEU Federated
DT Dataspace

T3.3 M1 M12

A2.4 Analysis of requirements for Cybersecurity and
data privacy

T3.4 M3 M12

A.3 Reference Architecture Design T3.1 M1 M12

MS4 Availability of TwinEU open reference
architecture

WP3 M12

A.4 Extrapolation of Functional Specifications WP2, WP3 M2 M14

A.5 Technical Requirements Specification WP2, WP3 M2 M14

A.6 Advanced service Workbench / Big Data / AI
Marketplace – First Version

T4.1 M4 M12

A.7 Multi-user XR development platform – First
Version

T4.2 M4 M12

A.8 Middleware development - First version T4.4 M6 M14

A.8.1 Base connector implementation T4.3, T4.4, T4.5 M6 M14

A.8.2 User Interface base version T4.4, T4.6 M6 M14

A.8.3 Interfaces & APIs T4.3, T4.4 M6 M14

A.8.4 Base Middleware & Data space components

integration

T4.4, T4.5

A.9 1st technology development cycle completion WP3-4 M18

MS5 Availability of 1st version of TwinEU platform.
Integrated platform (Services Workbench,

interactive augmented exploration,

middleware, integrated solution and validation)

WP4 M18

D4.1 Integration and deployment of TwinEU platform

47

D4.1 Integration and deployment of TwinEU platform WP4 M18

A.10 Coordination with demos and data sharing
strategies – First cycle of coordination

T4.3 M6 M18

A.11 EU Data Space adaptation to support the
TwinEU continuum

T4.5 M9 M18

A.11.1 First design of the new features of the OneNet
Connector

T4.5 M6 M18

A.11.2 First analysis of interoperability requirements,

data integration and homogenization

T4.5 M6 M18

D4.2 TwinEU Open Data Space v1 T4.5 M18

A.12 Initial functional validation & testing WP3-4 M16 M18

A.13 Integration and testing -1- WP3-4 M16 M18

A.13.1 TwinEU Deployment Guide [Integration Guide
update]

WP3-4 M16 M18

A.13.2 Initial Lab Testing WP3-4 M16 M18

A.13.3 Ensure functional requirements compliance WP3-4 M16 M18

Table 11: 2nd Development Phase

B Intermediate Development Phase M24

B.1 Reference Architecture Design fine-tuning and
finalization

T3.1 M12 M18

B.1.1 TwinEU components finalization T3.1 M12 M18

B.2 Cybersecurity and data privacy requirements
first version

T3.4 M14 M20

D3.1 TwinEU open reference architecture T3.1 M18

B.3 Functional Specifications Definition final
version

T3.2 M14 M20

B.3.1 Functional requirements middleware evolution T3.1, T3.2 M14 M20

B.3.2 Integration and Homogenisation final functional
requirements

T3.2 M14 M20

B.3.3 Analysis and finalization of the Demos use cases
of the DTs

WP2, T3.2 M14 M20

B.3.4 Extract the final functional requirements
version from the use cases

WP2, T3.2 M14 M20

B.3.5 User Interface fine-tuning correspondingly with
the functional requirements

T3.2, WP4 M14 M20

B.3.6 Integration and Homogenisation sub-layer
implementation - Final version

T3.2, WP4 M14 M20

B.3.7 Finalisation of Functional Specifications T3.2 M14 M20

B.3.8 Concluding Contingency plan & Risk
management

T3.2 M14 M20

B.4 Technical Specifications Definition final version T3.3 M14 M20

B.4.1 Finalization of the open and interoperable
Federated DT concept

T3.3 M14 M20

B.4.2 Finalization of the adaptive DT concept T3.3 M14 M20

B.4.3 Analysis of the interoperability requirements T3.3, T4.1, T4.3,
T4.4, T4.5

M14 M20

D4.1 Integration and deployment of TwinEU platform

48

B.5 Implementation of advanced service
Workbench / Big Data / AI Marketplace – Final
Version

T4.1 M18 M24

B.5.1 Compliance with security policies T3.4, T4.1 M18 M22

B.5.2 Publishment of the first mature version of the
set of services

T4.1 M18 M22

B.5.3 Integration with the Data Space Federated
Catalogue

T4.1 M18 M24

B.6 Implementation of interactive augmented
exploration of TwinEU DT – Final Version

T4.2 M18 M24

B.7 Middleware development - Intermediate
version

 M18 M24

B.7.1 Intermediate connector implementation T4.3, T4.4, T4.5 M18 M24

B.7.2 User Interface Finalization T4.4, T4.6 M18 M24

B.7.3 Update of interfaces & APIs T4.3, T4.4 M18 M24

B.7.4 Authentication & Authorisation base version T3.4, T4.4 M18 M24

B.7.5 Tools for Legal, Regulatory, Privacy and
Cybersecurity Compliance first version
implementation

T3.4, T4.4 M18 M24

B.7.6 Integration and Homogenisation sub-layer
implementation

T4.4, T4.5 M18 M24

B.7.7 Data quality & harmonisation services T4.4, T4.5 M18 M24

D3.2 Functional, and technical Specifications T3.2, T3.3, T3.4 M20

B.6 Coordination with demos and data sharing
strategies – Second cycle of coordination

T4.3 M18 M24

B.8 EU Data Space adaptation to support the
TwinEU continuum

T4.5 M18 M24

B.8.1 Second design of the new features of the
OneNet Connector to serve the DTs

T4.5 M18 M24

B.8.2 Finalisation of the interoperability
requirements, data integration and
homogenization

T4.5 M18 M24

B.8.3 Mapping Data Models into NGSI-LD – First
version

T4.5 M18 M24

B.8.4 Integration with Middleware T4.4, T4.5 M18 M24

B.9 Pre-integration testing WP4, WP5-8 M20 M24

B.10 1st & 2nd Release integration WP4, WP5-8 M20 M24

B.11 Ensure reference architecture compliance WP4 M20 M24

B.12 Post-integration testing WP4, WP5-8 M20 M24

B.13 Pilots Operation Testing WP4, WP5-8 M20 M24

B.14 Pilots’ Functional verification WP4, WP5-8 M20 M24

B.15 Integration and testing -2- WP4, WP5-8 M20 M24

B.15.1 Testing individual components WP4, WP5-8 M20 M24

B.15.2 Testing APIs & Interfaces WP4, WP5-8 M20 M24

B.15.3 Integration of all components WP4, WP5-8 M20 M24

B.15.4 Integrated platform lab testing WP4, WP5-8 M20 M24

B.15.5 Integrated platform field testing WP4, WP5-8 M20 M24

D4.1 Integration and deployment of TwinEU platform

49

B.15.6 Intermediate TwinEU prototype demo testing WP4, WP5-8 M20 M24

Table 12: Final Development Phase

C Final Development Phase M36

C.1 Cybersecurity and data privacy requirements
Final version

T3.4 M18 M30

C.2 Finalisation of Functional & Technical
Requirements

WP3, WP4 M18 M26

MS7 Activities completed in demo WPs WP4 M30

C.3 Coordination with demos and data sharing
strategies – Final cycle of coordination

T4.3 M24 M33

C.4 Middleware development - Final version T4.4 M24 M33

C.5 EU Data Space adaptation to support the
TwinEU continuum – Final release

T4.5 M24 M33

C.5.1 Testing and validation of the new features of
the OneNet Connector to serve the DTs

T4.5 M24 M33

C.5.2 Testing and validation of the interoperability
requirements, data integration and
homogenization

T4.5 M24 M33

C.5.3 Mapping Data Models into NGSI-LD – Final
version

T4.5 M24 M33

C.6 Final integration of the TwinEU framework,
including the Service Workbench, the
Middleware and the Connector.

 M24 M33

C.7 Ensure reference architecture compliance WP4 M24 M33

MS8 Preliminary validation of TwinEU platform WP4 – WP8 M30

C.8 Final assessment WP4 M24 M33

C.9 2nd & final release integration WP4 M24 M33

C.10 Integration and testing -3- WP4 – WP8 M24 M33

C.10.1 Testing individual components WP4 – WP8 M24 M33

C.10.2 Testing APIs & Interfaces WP4 – WP8 M24 M33

C.10.3 Integration of all components WP4 – WP8 M24 M33

C.10.4 Integrated platform lab testing WP4 – WP8 M24 M33

C.10.5 Integrated platform field testing WP4 – WP8 M24 M33

C.10.6 Final TwinEU prototype testing WP4 – WP8 M24 M33

C.10.7 TwinEU Validation WP4 – WP8 M24 M33

C.10.8 TwinEU integrated platform validation WP4 – WP8 M24 M33

C.10.9 Post-integration testing WP4 – WP8 M24 M33

C.11 WP4 Tech Release deployment activities WP4 M24 M33

C.12 Pilot test & validation of final integrated
release

WP4 – WP8 M36

D4.3 Validation of platform & implementation of
the TwinEU pan-European scenarios

T4.6 M25 M36

MS9 Availability of TwinEU final exploitation plan T4.6, WP10 M36

D4.1 Integration and deployment of TwinEU platform

50

7.2 Detailed Planning

7.2.1 Phase A: First Development Phase

Definition of Tech Release Components

This stage involves bilateral and dynamic discussion among the TwinEU technical stakeholders to

define the technology enablers and components that will support the project’s main objectives.

Technical and Functional Requirements definition

This stage will analyse the outcomes of key activities - Task 2.1 (Digitalisation challenges and

opportunities in the system planning, operation, and energy markets), Task 2.3 (Digital technologies

and boundary conditions and requirements) and the analysis of similar European projects – to develop

an initial set of technical requirements of TwinEU. Additionally, a high-level review of Task 2.4 (Setting

priorities and development of use cases) and Task 2.5 (Definition of validation process, pan-European

scenarios and KPIs) supports the preliminary planning of the functional requirements.

Reference Architecture Design – First version

This stage focuses on defining a foundational structure of the TwinEU software framework. It

involves creating a high-level architectural model that outlines core technical and structural

components including their relationships, communication interfaces, and deployment environments.

The initial reference architecture serves as the baseline for all future versions, all the development

activities. It ensures alignment with European Data pace and DT principles. The TwinEU architecture

will focus on the TwinEU Middleware, the TwinEU Connector and the TwinEU services Workbench and

the relationship between them within a Data Space ecosystem.

Extrapolation of Functional Specifications & review

In this stage the outcomes of the initial functional requirements definition are updated to the

organized identification and formalization of the preliminary functional capabilities of the TwinEU

system based on stakeholder needs, use-case requirements, and architectural design. This

extrapolation ensures traceability between high-level objectives and concrete software

functionalities. The initial set of requirements will focus on the following:

• Assessment of demo specific use cases.

• Middleware Functional Requirements definition & review.

• Analysis of requirements for energy data space compliant technological enablers.

• Analysis of requirements for energy services and DTs.

• Analysis of requirements related to the service Workbench / Big Data / AI Marketplace.

• Analysis of requirements related to Multi-user XR development platform.

• Analysis of the functional requirements of the Federated DTs concept.

Technical Requirements Specification

In this stage the outcomes of the initial functional requirements definition are updated to the

organized identification and formalization of the technical requirements of the TwinEU system based

on the desired functional requirements that are defined. This stage focuses on defining performance

constraints, interoperability protocols, data handling mechanisms, scalability targets, and security

policies. These requirements serve as guidelines and validation criteria throughout the lifecycle of the

project.

D4.1 Integration and deployment of TwinEU platform

51

Advanced service Workbench / Big Data / AI Marketplace – First Version

This phase focuses on the initial design and development of the services and models that will be

used in the TwinEU service Workbench and the Big Data and AI Marketplace. In this stage there will

be a thorough analysis of the pilot needs, and these services will be aligned with them. Additionally,

there will be research on useful tools and datasets among the TwinEU stakeholders that can support

these activities.

Multi-user XR development platform – First Version

This phase focuses on the initial development of the Interactive augmented exploration of TwinEU

DTs. In this stage there will be a thorough analysis of the already implemented DTs or the design of

the future DTs to conclude in the initial models that will be integrated within Unity3d and the initial

design of the Graphical user interface that will be used for the application.

Middleware development - First version

This stage of development includes a first prototype of the TwinEU Middleware that will include

core functionalities such as basic identity management, data access control, communication

protocols, and peer-to-peer data exchange. This version will be used for the first use case assessment

by some test users. The basic development effort will be:

• Base connector implementation.

• Interfaces & APIs development.

• Integration & homogenisation middleware sub layer implementation – first version.

• User interface base version.

• Basic data usage and access policy.

• Basic Identity and authorization tools.

Coordination with demos and data sharing strategies – First cycle of coordination

This stage includes coordination activities that involve the identification of the TwinEU

stakeholders that will participate as data or service providers and data or service consumers in the

desired use-case scenarios. These stakeholders should be familiar with data space principles and the

tools that enable data and service sharing. For this reason, in this stage the technical stakeholders

should provide specific demonstrations and presentations to support this goal.

EU Data Space adaptation to support the TwinEU continuum

This stage focuses on the adoption of EU data space approaches focusing on data management,

security, sovereignty and trust regarding the TwinEU components. Specifically, this stage should

define the ground rules and components that will be used within TwinEU regarding to model sharing,

data sharing governance, data integration and homogenization and the implementation of a data

connector according to the IDSA principles.

Initial functional validation & testing

In this stage it is performed a basic functional testing to validate the implementation of core

features regarding the specified functional and technical requirements. These test scenarios include

data transfers, authentication workflows, service registration, and user interactions.

Integration and testing -1-

The goal of this phase is to develop the TwinEU deployment guide, which will be included in the

updated version of the Integration Plan following the creation of the initial middleware prototype.

D4.1 Integration and deployment of TwinEU platform

52

This early prototype will undergo laboratory testing to verify that the TwinEU middleware meets the

functional requirements that are defined within the phase A.

7.2.2 Phase B: Intermediate Development Phase

Reference Architecture Design fine-tuning and finalization

This stage focuses on the refinement of the initial architectural version of the TwinEU system and

the finalisation of it. This stage may contain updated interface specifications between the

components, changes on the functionality and the responsibility of each component and generally

improved workflows, technology enablers and use-case scenarios. Overall, these changes should be

perfectly aligned with the functional requirements, technical requirements and stakeholder feedback

that are defined in other tasks.

Cybersecurity and data privacy requirements first version

In this stage there will be performed the first attempt of forming the ground legal rules, standards

and regulations regarding the TwinEU ecosystem. At this first stage there will be an analysis of the

European standards especially regarding the data protection that will lead to the initial requirements.

Functional Specifications Definition final version

In this stage, the functional requirements of the TwinEU framework will be further developed by

expanding the scope of the initial prototype and conducting a comprehensive analysis of all aspects

of TwinEU. The final set of requirements will focus on the following:

• Alignment with the whole demo use cases.

• Middleware Functional Requirements finalisation & review.

• Finalisation of requirements for energy data space compliant technological enablers.

• Finalisation of requirements for energy services and DTs.

• Finalisation of requirements related to the service Workbench / Big Data / AI Marketplace.

• Finalisation of requirements related to Multi-user XR development platform.

• Finalisation of the functional requirements of the Federated DTs concept.

Technical Specifications Definition final version

In this stage the technical requirements that were defined in the Phase A are updated and finalised.

These completed technical requirements will focus on updating performance metrics, resulting in the

desired interoperability standards, improving data handling and processing and resulting in the best

possible federated deployment mechanism.

Implementation of advanced service Workbench / Big Data / AI Marketplace – Final Version

This development iteration will deliver the final version of the Services and models that will be

deployed in the TwinEU Workbench. This development will be based on the careful analysis of all the

pilot use cases and the feedback from the TwinEU stakeholders about the development results of the

Phase A. Additionally, during this stage will be deployed the IDSA Federated Catalogue into the

implementation of Services Workbench. Finally, this stage requires the integration of the Workbench

with the rest TwinEU components.

Implementation of interactive augmented exploration of TwinEU DT – Final Version

This development iteration will deliver the final version of the models and visualization tools that

will be deployed in the TwinEU Multi-user XR Development Platform. This development will be based

D4.1 Integration and deployment of TwinEU platform

53

on the careful analysis of all the pilot needs and the feedback from the TwinEU stakeholders about

the development results of the Phase A. Additionally, during this stage will be implemented the

Graphical user Interface and the real-time data integration tools into the implementation of the XR

Platform. Finally, this stage requires the integration of the XR Platform with the rest TwinEU

components.

Middleware development - Intermediate version

During this stage the basic development activities will include the updates and the improvement

of the first Middleware prototype. First, it is crucial for the Middleware to align with the defined

functional, technical requirements and the TwinEU architectural design. The basic development effort

will be:

• Final connector implementation.

• Interfaces & APIs development.

• User interface updated version.

• New features for trusted data exchange protocols and metadata-based routing.

• Updated data usage and access policy.

• Updated Identity and authorization tools.

Coordination with demos and data sharing strategies – Second cycle of coordination

Until this stage the TwinEU stakeholders should have been already educated to use the data

sharing tools and the settings of the components. During this stage the TwinEU stakeholders should

begin the integration of their services, data or DTs in the data sharing components and perform the

first test data sharing attempts with test data or for more mature integrations with real data. Of

course, this stage includes the feedback between the users and the technical teams.

EU Data Space adaptation to support the TwinEU continuum

During this stage the main objective is to connect the DT that is the main entity within TwinEU with

the main entity of Data Space ecosystem which is the Connector. Hence, it is essential to perform the

integration mechanism of a DT to the TwinEU Connector to enable the exchange of data and models

under standard predefined principles of sovereignty, access policy and data interoperability.

Pre-integration testing

During this stage all crucial components and subsystems undergo a standalone integration testing.

These tests include interface mismatches identification, error handling and generally the compatibility

check of the components.

1st & 2nd Release integration

This stage combines features that are integrated during the initial integration process and features

from the second integration release. The objective of this stage is the harmonization of modules and

a stable deployment and alignment of the two versions.

Ensure reference architecture compliance

During this stage a formal validation is performed to confirm that all the components and

functionalities adhere to the final reference architecture that is defined in previous steps.

Post-integration testing

D4.1 Integration and deployment of TwinEU platform

54

This stage follows the process of the system integration and includes a comprehensive testing

across all system layers to verify stability, functional correctness, and performance.

Pilots Operation Testing

In this stage the TwinEU integrated system is deployed within the TwinEU pilots to evaluate real-

world performance, accuracy of data flows, and system usability. The objective of this phase is to

identify specific issues and insights through end-user operational integration.

Pilots’ Functional verification

This stage validates all the TwinEU system features and workflows against the predefined use cases

and functional specifications of the pilots. This stage confirms that the deployed system satisfies policy

requirements, end-user expectations, and technical constraints.

Integration and testing -2-

The goal of this concluding phase is to develop the second, updated prototype of the TwinEU

platform by taking into consideration the outcomes of the previous stages of Phase B and integrating

all individual components into a unified framework. The platform will undergo testing in both field

and laboratory environments, with initial evaluations conducted to ensure an overall compliance with

Phase B architecture and requirements and to confirm the successful execution of demonstration use

cases.

7.2.3 Phase C: Final Development Phase

Cybersecurity and data privacy requirements Final version

This task finalizes the comprehensive sovereignty, cybersecurity, trust, and data privacy framework

for the TwinEU system. During this stage it is ensured that all components and data communication

comply with the state-of-the-art legal and regulatory rules, including GDPR and EU Cybersecurity

obligations.

Finalisation of Functional & Technical Requirements

During this stage all the functional and technical specifications are summarized, finalized and

reviewed. This step is also very important because of the comprehensive documentation that is

necessary for the correct guidance of rest implementations and deployments and for the long-term

maintenance planning.

Coordination with demos and data sharing strategies – Final cycle of coordination

This final cycle of the coordination with the demonstration sites regarding the data sharing, focuses

on aligning the final system behaviour with the overall operational workflows and data sharing

activities of the pilots. A prerequisite of this step is the pilot stakeholders to be familiar with the system

functionality and to have completed successfully the preparation processes that were described in the

previous phases.

Middleware development - Final version

During this stage will be developed the final version of the middleware, incorporating updates and

improvements based on:

• Issues identified during the second integration and testing cycle, and

• any new changes arising from the finalised functional requirements and use cases.

D4.1 Integration and deployment of TwinEU platform

55

EU Data Space adaptation to support the TwinEU continuum – Final release

This stage implements the last release of the TwinEU Data Space which integrates the whole service

utilization, data and models exchange process through the Data Space Connectors. Additionally,

semantic and ontology orchestration should be optimized, aligning with IDSA compatible standards

such as SAREF, ETSI Context and NGSI-LD. Special mention should be given to the Adaptive DT concept

that should be totally compatible, scalable and extendible through the Data Space Connector.

Final integration of the TwinEU framework, including the Service Workbench, the Middleware and
the Connectors.

This task completes the integration of all crucial system components into a single cohesive

framework. The main objective is to ensure full interoperability between the Service Workbench, the

Connectors and Middleware, enabling seamless data and service exchanges across the TwinEU

ecosystem.

Ensure reference architecture compliance

This stage performs a final compliance audit and cross examination that the implemented system

architecture conforms to the approved and finalised TwinEU reference architecture.

Final assessment

In this stage a comprehensive evaluation of the TwinEU system is carried out. This evaluation

includes technical performance reviews, system maturity analysis, interfaces testing, user acceptance

feedback and readiness assessment for operational deployment.

2nd & final release integration

In this phase all the components and demo implementations are fully integrated into the final

system release.

Integration and testing -3-

This stage is the final round of system integration and testing. This phase validates overall system

performance and verifies that all components function correctly under production-like conditions.

WP4 Tech Release deployment activities

This stage performs the deployment of the final technical release managed under WP4. The

activities of this stage include documentation, packaging, deployment support, and communication

with stakeholders to facilitate the launching in various operational environments.

Pilot test & validation of final integrated release

After the completion of integration and pre-release test processes, the final integrated release is

tested and validated in live pilot environments. This ensures that all end-to-end functionalities are

working correctly, data flows are seamless, and the platform delivers the expected value to end users

under realistic operational scenarios.

D4.1 Integration and deployment of TwinEU platform

56

8 Conclusions

Concluding, the work presented in this deliverable is the first iteration of three several consecutive

development processes (and the deliverables that present their steps and methodologies) that aim at

designing and iteratively developing the evolution on the TwinEU Platform implementation and

deployment, alongside with its role in the broader TwinEU framework. The comprehensive analysis

provided in this report of the TwinEU project, demonstrates a strong effort of all the project partners

towards technological advancement and alignment towards a robust Data-Space-enabled federated

ecosystem enriched with value-added functionalities.

The first version of the TwinEU Platform is described, along with its initial alignment, interactions

and integration with the value-added components of the TwinEU framework, such as the Services

Workbench/ Big Data / AI marketplace, the Interactive tools for augmented exploration of TwinEU DT

and the Data Space components (basically the TwinEU Connector). This is important information for

the TwinEU participants as an introduction for the deployment, integration and facilitation needs of

the TwinEU Platform and related components. This first effort is the basis that will ensure the

enhancement and extension of the TwinEU framework that will be implemented in an iterative design

and development process until the end of the project.

Based on the results of this first version, it is recommended that future work continues to monitor

and emphasize to modularity, scalability, and compliance with data and model management and

sovereignty principles. Additionally, there is a need for a constant monitoring to and enrichment with

the evolving functionalities of the TwinEU Data Space Connectors, in order to cover all the TwinEU use

cases and offer sustained interoperability and stakeholder trust. Moreover, continued collaboration

with demonstration activities and the service layer (AI marketplace, Big Data workbench) will further

strengthen the utility and reach the final desired version of the TwinEU platform.

Looking forward, the first development outcomes of the TwinEU platform create confidence in the

creation of a pan-European Data Space ecosystem with a variety of cutting-edge, value-added

features. The TwinEU whole Framework, which is totally dependent on the TwinEU platform, is

expected to evolve as a cornerstone for Europe’s digital energy transition. It has the potential to

become a reference framework not only for technical integration but also for governance and policy

alignment, enabling an energy system that is resilient, intelligent, and cooperative by design.

D4.1 Integration and deployment of TwinEU platform

57

References

[1] Gaia-X, “Home - Gaia-X: A federated Secure data infrastructure”, https://gaia-x.eu/.

[2] FIWARE, “FIWARE - Open APIs for Open Minds,” https://www.fiware.org/.

[3] BRIDGE, “Smart Grid Storage Systems Digital Projects”, https://bridge-smart-grid-storage-

systems-digital-projects.ec.europa.eu/.

[4] International Data Spaces Association, “Home - International Data Spaces”,

https://internationaldataspaces.org/

[5] OneNet Project: https://www.onenet-project.eu/.

[6] BD4NRG Project, https://www.bd4nrg.eu/.

[7] Enershare Project, https://enershare.eu/.

[8] ISO, “ISO/IEC/IEEE 42010:2022 -Software, systems and enterprise — Architecture

description,” [Online]. Available: https://www.iso.org/standard/74393.html.

[9] P. Kruchten, “Architectural Blueprints—The “4+1” View Model of Software Architecture,” IEEE

Software 12 (6), pp. 42-50, 1995, doi: 10.1109/52.469759.

[10] European Commission, “European Energy Data Exchange Reference Architecture,” BRIDGE -

Data Management Working Group, 2020. [Online]. Available:

https://energy.ec.europa.eu/system/files/2021-

06/bridge_wg_data_management_eu_reference_architcture_report_2020-2021_0.pdf.

[11] CEN – CENELEC – ETSI: Smart Grid Coordination Group, “Smart Grid Reference Architecture

Report V2.0”, 2012, https://www.researchgate.net/publication/263264218_CEN_-

CENELEC_-_ETSI_Smart_Grid_Coordination_Group_-

_Smart_Grid_Reference_Architecture_Report_20.

[12] Comprehensive Architecture for Smart Grid (COSMAG), “Definition Of A Global Architecture

For Smart Grid Applications”, 2018, https://aioti.eu/wp-

content/uploads/2019/03/20181010_COSMAG_07.pdf.

[13] FIWARE, “FIWARE: The Open Source Platform Of Choice For Building Smart Energy Solutions”.

[Online]. Available: https://www.fiware.org/wp-content/directories/marketing-

toolbox/material/FIWAREBrochure_SmartEnergy.pdf.

[14] Alliance for Internet of Things Innovation “High Level Architecture (HLA), Release 5.0”,

December 2020. [Online] Available: https://aioti.eu/wp-

content/uploads/2020/12/AIOTI_HLA_R5_201221_Published.pdf.

[15] Big Data Value Association, “Towards A European Data Sharing Space: Enabling data exchange

and unlocking AI potential, BDVA Position Paper”, April 2019. [Online]. Available:

https://bdva.eu/wp-content/uploads/pdfs-

legacy/BDVA%20DataSharingSpace%20PositionPaper_April2019_V1.pdf.

[16] GAIA-X, “Gaia-x - Architecture Document – 22.04 Release,” Apr. 2022. [Online]. Available:

https://gaia-x.eu/wp-content/uploads/2022/06/Gaia-x-Architecture-Document-22.04-

Release.pdf

[17] MinIO, Inc., “S3 Compatible Storage for AI,” https://min.io/.

[18] TwinEU, “D3.1: TwinEU Open Reference Architecture”, 2025,

https://twineu.net/deliverables/.

[19] RabbitMQ, https://www.rabbitmq.com/.

[20] Apache NiFi. https://nifi.apache.org/.

[21] Unity Real-Time Development Platform, https://unity.com/.

[22] Unreal Engine, https://www.unrealengine.com/en-US.

[23] WebXR Device API Specification, https://github.com/immersive-web/webxr.

https://gaia-x.eu/
https://www.fiware.org/
https://bridge-smart-grid-storage-systems-digital-projects.ec.europa.eu/
https://bridge-smart-grid-storage-systems-digital-projects.ec.europa.eu/
https://internationaldataspaces.org/
https://www.onenet-project.eu/
https://www.bd4nrg.eu/
https://enershare.eu/
https://www.iso.org/standard/74393.html
https://energy.ec.europa.eu/system/files/2021-06/bridge_wg_data_management_eu_reference_architcture_report_2020-2021_0.pdf
https://energy.ec.europa.eu/system/files/2021-06/bridge_wg_data_management_eu_reference_architcture_report_2020-2021_0.pdf
https://www.researchgate.net/publication/263264218_CEN_-CENELEC_-_ETSI_Smart_Grid_Coordination_Group_-_Smart_Grid_Reference_Architecture_Report_20
https://www.researchgate.net/publication/263264218_CEN_-CENELEC_-_ETSI_Smart_Grid_Coordination_Group_-_Smart_Grid_Reference_Architecture_Report_20
https://www.researchgate.net/publication/263264218_CEN_-CENELEC_-_ETSI_Smart_Grid_Coordination_Group_-_Smart_Grid_Reference_Architecture_Report_20
https://aioti.eu/wp-content/uploads/2019/03/20181010_COSMAG_07.pdf
https://aioti.eu/wp-content/uploads/2019/03/20181010_COSMAG_07.pdf
https://www.fiware.org/wp-content/directories/marketing-toolbox/material/FIWAREBrochure_SmartEnergy.pdf
https://www.fiware.org/wp-content/directories/marketing-toolbox/material/FIWAREBrochure_SmartEnergy.pdf
https://aioti.eu/wp-content/uploads/2020/12/AIOTI_HLA_R5_201221_Published.pdf
https://aioti.eu/wp-content/uploads/2020/12/AIOTI_HLA_R5_201221_Published.pdf
https://bdva.eu/wp-content/uploads/pdfs-legacy/BDVA%20DataSharingSpace%20PositionPaper_April2019_V1.pdf
https://bdva.eu/wp-content/uploads/pdfs-legacy/BDVA%20DataSharingSpace%20PositionPaper_April2019_V1.pdf
https://gaia-x.eu/wp-content/uploads/2022/06/Gaia-x-Architecture-Document-22.04-Release.pdf
https://gaia-x.eu/wp-content/uploads/2022/06/Gaia-x-Architecture-Document-22.04-Release.pdf
https://min.io/
https://twineu.net/deliverables/
https://www.rabbitmq.com/
https://nifi.apache.org/
https://unity.com/
https://www.unrealengine.com/en-US
https://github.com/immersive-web/webxr

D4.1 Integration and deployment of TwinEU platform

58

[24] OpenXR, https://www.khronos.org/OpenXR.

[25] Meta Business SDK, https://developers.facebook.com/docs/business-sdk/.

[26] Khronos gITF, https://www.khronos.org/Gltf.

[27] Unity, “About Netcode for GameObjects” https://docs-

multiplayer.unity3d.com/netcode/current/about/.

[28] Data Space Support Centre, “Data, Services, and Offerings Descriptions,” 2024. [Online].

Available:

https://dssc.eu/space/bv15e/766069419/Data,+Services,+and+Offerings+Descriptions.

[29] International Data Space Association, “Contract Negotiation | Specification”,

https://docs.internationaldataspaces.org/ids-knowledgebase/dataspace-protocol/contract-

negotiation/contract.negotiation.protocol.

[30] Code with C, “C++ and Virtual Reality: Developing Real-Time VR Systems”,

https://www.codewithc.com/c-and-virtual-reality-developing-real-time-vr-systems/.

[31] Powervr-Graphics, “GitHub - powervr-graphics/Native_SDK: C++ cross-platform 3D graphics

SDK.”, https://github.com/powervr-graphics/Native_SDK.

[32] TwinEU “D2.2: TwinEU Use Cases, pan-European scenarios and KPIs”, 2025. [Online] Available:

https://twineu.net/wp-content/uploads/2025/07/TwinEU_D2.2_v1.0-3.pdf.

https://www.khronos.org/OpenXR
https://developers.facebook.com/docs/business-sdk/
https://www.khronos.org/Gltf
https://docs-multiplayer.unity3d.com/netcode/current/about/
https://docs-multiplayer.unity3d.com/netcode/current/about/
https://dssc.eu/space/bv15e/766069419/Data,+Services,+and+Offerings+Descriptions
https://docs.internationaldataspaces.org/ids-knowledgebase/dataspace-protocol/contract-negotiation/contract.negotiation.protocol
https://docs.internationaldataspaces.org/ids-knowledgebase/dataspace-protocol/contract-negotiation/contract.negotiation.protocol
https://www.codewithc.com/c-and-virtual-reality-developing-real-time-vr-systems/
https://github.com/powervr-graphics/Native_SDK
https://twineu.net/wp-content/uploads/2025/07/TwinEU_D2.2_v1.0-3.pdf

	Table of Contents
	List of Figures
	List of Tables
	Executive Summary
	1 Introduction
	1.1 Task 4.1 Services Workbench/ Big Data / AI marketplace for interoperability
	1.2 Task 4.2 Interactive augmented exploration of TwinEU DT
	1.3 Task 4.4 TwinEU platform development
	1.4 Task 4.5 EU Data Space adaptation to support the TwinEU continuum
	1.5 Objectives of the Work Reported in this Deliverable
	1.6 Outline of the deliverable
	1.7 How to Read this Document

	2 Reference Architecture & The TwinEU platform
	2.1 Introduction
	2.2 TwinEU Reference Architecture
	2.3 TwinEU General Functionality
	2.4 The TwinEU Architecture

	3 Services Workbench/ Big Data / AI marketplace for interoperability
	3.1 Components Description
	3.2 Components Functionalities
	3.3 Deployment

	4 Interactive augmented exploration of TwinEU DT
	4.1 Components Description
	4.1.1 VR Technologies: State of the Art and main requirements
	4.1.1.1 Key Features of Real-Time VR Visualization Applications
	4.1.1.2 Technical Requirements for VR Visualization
	4.1.1.3 Development Platforms for VR Applications

	4.1.2 SDKs, Platforms, and Tools for VR Visualization and Collaboration
	4.1.2.1 OpenXR: The Unified Interface for XR Development
	4.1.2.2 Meta SDK (Oculus Integration): Optimized for Quest Devices
	4.1.2.3 Comparison of Leading VR Development Platforms
	4.1.2.4 Networking Options for Multiplayer VR
	4.1.2.5 Unity as the Optimal Platform for VR Visualizers
	4.1.2.6 Recommended Stack: Unity + Meta SDK for Quest

	4.2 Features & Functionalities
	4.2.1.1 XR Client for Unity
	4.2.1.2 XRCU Architecture

	4.3 Deployment

	5 Data Space adaptation to support the TwinEU continuum
	5.1 TwinEU Digital Twin Federator
	5.1.1 OneNet Data Space Framework
	5.1.2 Evolution from OneNet Framework and First Release

	5.2 Features & Functionalities
	5.2.1 Interfaces – REST APIs and GUI
	5.2.1.1 Connector APIs
	5.2.1.2 Data Space Protocol APIs
	5.2.1.3 Graphical User Interface (GUI)

	5.3 Deployment
	5.3.1 Docker Installation

	6 TwinEU platform development and integration
	6.1 Introduction
	6.2 TwinEU Decentralised Middleware Components
	6.3 Interfaces & Functionalities
	6.4 Integration Guidelines of the TwinEU Middleware
	6.4.1 Prerequisites and Installation
	6.4.2 Hardware Requirements
	6.4.3 Operating System Requirements
	6.4.4 Software Requirements
	6.4.5 Software Deployment Instructions

	6.5 Testing Scenarios Methodology

	7 Integration & Development Plan of the TwinEU framework
	7.1 Overview of the Development Plan
	7.2 Detailed Planning
	7.2.1 Phase A: First Development Phase
	7.2.2 Phase B: Intermediate Development Phase
	7.2.3 Phase C: Final Development Phase

	8 Conclusions
	References

